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Abstract. The optimization of measurement forn samples of pure states are studied. The
error of the optimal measurement forn samples is asymptotically compared with the one of the
maximum likelihood estimators fromn data given by the optimal measurement for one sample.

1. Introduction

Recently, there has been a rise in the necessity for studies about statistical estimation
for the unknown state, related to the corresponding advance in measuring technologies
in quantum optics. An investigation including both quantum theory and mathematical
statistics is necessary for an essential understanding of quantum theory because it has
statistical aspects [1, 2]. Therefore, it is indeed important to optimize the measuring process
with respect to the estimation of the unknown state. Such research is known as quantum
estimation, and was initiated by Helstrom in the late 1960s, originating in the optimization
of the detecting process in optical communications [1]. In the classical statistical estimation,
one searches for the most suitable estimator for which probability measure describes the
objective probabilistic phenomenon. In quantum estimation, one searches for the most
suitable measurement for which density operator describes the objective quantum state.

Contained among important results are three estimation problems. The first is of the
complex amplitude of coherent light in thermal noise and the second is of the expectation
parameters of quantum Gaussian state. The former was studied by Yuen and Lax [3] and
the latter by Holevo [2]. These studies discovered that heterodyning is the most suitable
for the estimation of the complex amplitude of coherent light in thermal noise. The third
is a formulation of the covariant measurement with respect to an action of a group. It
was studied by Holevo [2, 4]. In the formulation, he established a quantum analogue of
Hunt–Stein theorem.

Quantum estimation, was first used in the evaluation of the estimation error of a single
sample of the unknown state as it had advanced in connection with the optimization of
the measuring process in optical communications. Thus, early studies were lacking in
asymptotic aspects, i.e. there was little research with respect to reducing the estimation
error by quantum correlations between samples.

Recently, studies concerning the estimation of the unknown state have attracted many
physicists [5–8]. Some of them were drawn by the variation of the measuring precision
with respect to the number of samples of the unknown state [9, 10].
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Nagaoka [11] studied, for the first time, asymptotic aspects of quantum estimation. He
paid particular attention to the quantum correlations between samples of the unknown state,
and studied the relation between the asymptotic estimation and the local detection of a
one-parameter family of quantum states.

In the early 1990s, Fujiwara and Nagaoka [12–14] studied the estimation problem for a
multiparameter family consisting of pure states. They pioneered studies into the estimation
problem of the complex amplitude of noiseless coherent light. However, there had been
some studies with respect to that of coherent light in thermal noise. The research found that
heterodyning is the most suitable for the estimation of the complex amplitude of noiseless
coherent light. In 1996, Matsumoto [15] established a more general formulation of the
estimation for a multiparameter family consisting of pure states. Moreover in 1991, Nagaoka
[16] treated the estimation problem for two-parameter families of mixed states in a spin-1

2
system, and in 1997 Hayashi [17, 18] treated it for three-parameter families of mixed states
in a spin-12 system. However, there are no asymptotic aspects in these works concerning
multiparameter families. There is more need of this type of investigation into one- and
multiparameter families.

Can quantum estimation reduce the estimation error by using the quantum correlations
between samples, under the preparation of sufficient samples of the unknown state? To
answer this question, in this paper, we treat a family, consisting of pure states on a Hilbert
spaceH† under the preparation ofn samples of the unknown state, with the estimation
problem. In section 2, we use, as a tool, the composite system consisting ofn samples as
a single system. The quantum i.i.d. condition is introduced as the quantum counterpart
of the independent and identical distributions condition (3). In section 3, we review
Holevo’s result concerning covariant measurements which will be used in the following
sections. In section 4, we apply Holevo’s result to the optimization of measurements on the
composite system, which results in obtaining the most suitable measurement (theorem 3).
We asymptotically calculate the estimation error by the optimal measurement in the sense
of both the error mean square and large deviation (see (9)–(11) and (13)). The first term
of the right-hand side of (10) is consistent with the value conjectured from the results in
Fujiwara and Nagaoka [14] and Matsumoto [15]. However, the optimal measurement may
be too difficult for modern technology to realize when using more than one sample.

In section 5, we use this estimation problem under the following guidelines. The samples
are divided into pairs consisting of a maximum ofm samples. By measuring each pair with
the optimal measurement of section 4, we create some data. The estimated value is given by
manipulating these data. The restricted condition ism-semiclassical (see (14)). We compare
anm-semiclassical measurement with the optimal measurement of section 4 with respect to
the estimation error under the preparation of a sufficient amount of samples. When we use
the maximum likelihood estimator to manipulate the data, the error mean square of both
asymptotically coincide in the first order (see (10) and (19)). However, when the radius
of allowable errors is finite, the error of large deviations in the latter type is smaller than
that in the former type (see (11) and (20)). Both coincide in the case of the maximum
likelihood estimator under the limit where the radius goes to infinitesimal (13), (21). Can
we asymptotically realize a small estimation error as the optimal measurements in section 4
has? It is, physically, sufficient to construct the optimal measurement for one sample. In
section 5, we show how to construct it (see (25)).

Most of the proofs of this paper are given in the appendices. In view of multiparameter
families of mixed states in spin-1

2 system, Hayashi [19] discussed the same problem using

† WhereH denotes a finite-dimensional Hilbert space which corresponds to the physical system of interest.
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Craḿer–Rao-type bound.

2. Pure staten-i.i.d. model

In this section, we use the mathematical formulation of the estimation for pure states. Let
k be the dimension of the Hilbert spaceH, andP(H) be the set of pure states onH.

In quantum physics, the most general description of a quantum measurement is
probability given by the mathematical concept of apositive operator-valued measure
(POVM) [1, 2] on the system of state space. Generally, if� is measurable space, a
measurementM satisfies the following

M(B) = M(B)∗ M(B) > 0 M(∅) = 0 M(�) = Id onH∀B ⊂ �
M(∪iBi) =

∑
i

M(Bi) for Bi ∩ Bj = ∅(i 6= j) {Bi} is countable subsets of�.

In this paper,M(�,H) denotes the set of POVMs onH whose measurable set is�. A
measurementM ∈ M(�,H) is said to be simple ifM(B) is a projection for any Borel
B ⊂ �. A measurementM is random if it is described as a convex combination of simple
measurements. A random measurementM = ∑i aiMi (Mi is simple andai > 0) can be
realized when every measurementMi is taken with the probabilityai .

In this paper, we consider measurements whose measurable set isP(H) since it is
known that the unknown state is included inP(H).

Next, we define two distances characterizing the homogeneous spaceP(H).

Definition 1. The Fubini–Study distancedf s (which is the geodesic distance of the Fubini–
Study metric) is defined as:

cosdf s(ρ, ρ̂) =
√

tr ρρ̂ 06 df s(ρ, ρ̂) 6
π

2
. (1)

The Bures distancedb is defined in the usual way:

db(ρ, ρ̂) :=
√

1− tr ρρ̂. (2)

It was introduced by Bures [20] in a mathematical context.

Let W(ρ, ρ̂) be a measure of deviation of the measured valueρ̂ from the actual valueρ,
then we have the following equivalent conditions.
• W(ρ, ρ̂) = W(gρg∗, gρ̂g∗)∀ρ, ∀ρ̂ ∈ P(H)∀g ∈ SU(k).
• There exists a functionh on [0, 1] such thatW(ρ, ρ̂) = h ◦ df s(ρ, ρ̂).
It is natural to assume that a deviation measureW(ρ, ρ̂) is monotone increasing with

respect to the Fubini–Study distancedf s .
If H1, . . . ,Hn aren Hilbert spaces which correspond to the physical systems, then their

composite system is represented by the tensor Hilbert space:

H(n) := H1⊗ · · · ⊗Hn =
n⊗
i=1

Hi .

Thus, a state on the composite system is denoted by a density operatorρ on H(n). In
particular ifn element systems{Hi} of the composite systemH(n) are independent of each
other, there exists a densityρi onHi such that

ρ(n) = ρ1⊗ · · · ⊗ ρn =
n⊗
i=1

ρi.
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The condition:

H1 = · · · = Hn = H, ρ1 = · · · = ρn = ρ (3)

corresponds to the independent and identically distributed (i.i.d.) condition in the classical
case. In this paper, we use this estimation problem under condition (3), called the quantum
i.i.d. condition. This condition means that identicaln samples are independently prepared.
The model{ρ(n) = ρ ⊗ · · · ⊗ ρ︸ ︷︷ ︸

n

|ρ ∈ P(H)} is calledn-i.i.d. model. Asρ is a pure state,

H(n) andρ(n) are simplified as follows. Lettingρ = |φ〉〈φ| ∈ P(H), we have

ρ(n) = |φ(n)〉〈φ(n)| φ(n) :=
n︷ ︸︸ ︷

φ ⊗ · · · ⊗ φ .
Because all of the vectorsφ(n) are included inn-times symmetric tensor space, for any
measurementM ∈ M(�,H(n)) on the n-times tensor spaceH(n), the measurement
M̃(dω) := PH(n)s M(dω)PH(n)s ∈ M(�,H(n)s ) on then-times symmetric tensor spaceH(n)s
satisfies that:

trM(dω)ρ(n) = tr M̃(dω)ρ(n) ∀ρ ∈ H
whereH(n)s denotes then-times symmetric tensor space onH. Therefore, all possible
measurements can be regarded as elements ofM(P(H),H(n)s ). The mean error of the
measurement5 ∈M(P(H),H(n)s ) with respect to a deviation measureW(ρ, ρ̂), provided
that the actual state isρ, is equal to

DW,(n)ρ (5) :=
∫
P(H)

W(ρ, ρ̂) tr(5(dρ̂)ρ(n)).

In minimax approach the maximum possible error with respect to a deviation measure
W(ρ, ρ̂)

DW,(n)(5) := max
ρ∈P(H)

DW,(n)ρ (5)

is minimized.

3. Quantum Hunt–Stein theorem

In this section, the quantum Hunt–Stein theorem, established by Holevo [2, 4], is
summarized. LetG be a compact transitive Lie group of all transformations on a compact
parametric set2, and{Vg} a continuous unitary irreducible representation ofG in a finite-
dimensional Hilbert spaceH′ := Ck′ , andµ a σ -finite invariant measure on groupG such
thatµ(G) = 1. In this section, we consider the following measurement condition.

Definition 2. A measurement5 ∈M(2,H′) is covariant with respect to{Vg} if

V ∗g 5(B)Vg = 5(Bg−1)

for any g ∈ G and any BorelB ⊂ 2, where

Bg := {gθ |θ ∈ B}.
M(2, V ) denotes the set of covariant measurements with respect to{Vg}.
Covariant measurements are characterized by the following theorem.
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Theorem 1.The mapV θ from the setS(H′) of densities onH′ toM(2, V ) is surjective
for any θ ∈ 2, where a POVMV θ(P ) is defined as follows

V θ(P )(B) := k′
∫
{gθ∈B}

VgPV
∗
g µ(dg) ∀B ∈ B(2)

for anyP ∈ S(H′).
In this section, we use the following condition for a family of states.

Definition 3. The family is called covariant under the representation{Vg} of groupG acting
on2, if

Sgθ = VgSθV ∗g ∀θ ∈ 2, ∀g ∈ G.
Assuming that the object is prepared in one of the states{Sθ |θ ∈ 2} but the actual value ofθ
is unknown, then the difficulty is estimating this value as close as possible to a measurement
on the object. We shall solve this problem by means of quantum statistical decision theory.

Let W(θ, θ̂) be a measure of deviation of the measured valueθ̂ from the actual value
θ . It is natural to assume thatW(θ, θ̂) is invariant:

W(θ, θ̂) = W(gθ, gθ̂) ∀θ, ∀θ̂ ∈ 2, ∀g ∈ G. (4)

The mean error of the measurement5 ∈ M(2,H′) with respect to a deviation measure
W(θ, θ̂), provided that the actual state isSθ , is equal to

DW,Sθ (5) :=
∫
2

W(θ, θ̂) tr(5(dθ̂ )Sθ ).

Following the classical statistical decision theory, we can form two functionals ofDWθ giving
a total measure of precision of the measurement5.

In Bayes’ approach we take the mean ofDWθ with respect to a given prior distribution
π(dθ). The measurement minimizing the resulting functional:

DW,Sπ (5) :=
∫
2

DW,Sθ (5)π(dθ)

is called Bayesian. This quantity represents the mean error in the situation whereθ is a
random parameter with known distributionπ(dθ). In particular, as2,G are compact and
‘nothing is known’ aboutθ , it is natural to take forπ(dθ) the ‘uniform’ distribution, i.e.
normalized invariant measureν(dθ) defined as follows

ν(B) := µ({gθ ∈ B}).
It is independent of the choice ofθ ∈ 2.

In minimax approach the maximum possible error with respect to a deviation measure
W(θ, θ̂)

DW,S(5) := max
θ∈2
DW,Sθ (5)

is minimized. The minimizing measurement is called minimax.
BecauseG is compact, we shall show that in the covariant case the minima of Bayes

and minimax criteria coincide and are achieved on a covariant measurement. We obtain the
following quantum Hunt–Stein theorem [2, 4]. It is easy to prove the theorem.

Theorem 2.For a covariant measurement5 ∈M(2, V ), we obtain the following equations:

DW,Sθ (5) = DW,Sν (5) = DW,S(5).
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For5 ∈M(2,H′), denote

5g(B) := Vg5(Bg)V ∗g for B ∈ B(2).
Introducing the ‘averaged’ measurement

5̄(B) :=
∫
G

5g−1(B)µ(dg)

we have

DW,Sν (5̄) =
∫
G

DW,Sν (5g−1)µ(dg) = DW,Sν (5).

Thus,

DW,S(5) > DW,Sν (5) = DW,Sν (5̄).

In this case, minimax approach and Bayes’ approach with respect toν(dθ) are equivalent.
Therefore we minimize the following

DW,Sθ ◦ V θ(P ) = k′
∫
G

W(θ, gθ) tr SθVgPV
∗
g µ(dg) = tr Ŵ (θ)P

where

Ŵ (θ) : = k′
∫
G

W(θ, gθ)V ∗g SθVgµ(dg)

= k′
∫
2

W(θ, θ̂)Sθ̂ ν(dθ̂ ).

Thus, it is sufficient to consider the following minimization:

min
P∈S(H)

tr Ŵ (θ)P = min
P∈P(H′)

tr Ŵ (θ)P .

4. Optimal measurement in pure staten-i.i.d. model

In this section we apply the theory of section 3 to the problem of section 2.
We let

2 := P(H) H′ := H(n)s G := SU(k) Sρ := ρ(n).
Then, the invariant measureν onP(H) is equivalent to the measure defined by the volume
bundle induced by the Fubini–Study metric. We let the action{Vg} of G = SU(k) to H(n)s
be the tensor representation of the natural representation. In this case, we havek′ = (n+k−1

k−1

)
.

Theorem 3.If a deviation measureW(ρ, ρ̂) is monotone increasing with respect to the
Fubini–Study distancedf s , we find

min
P0∈P(H(n)s )

tr Ŵ (ρ)P0 = tr Ŵ (ρ)ρ(n).

For a proof see appendix A. Thus,V ρ(ρ(n)) is the optimal measurement with respect to a
deviation measureW(ρ, ρ̂). The optimal measurement is independent of the choice ofρ

andW sinceV ρ0(ρ
(n)

0 ) = V ρ(ρ(n)). This optimal measurement is denoted by5n and is
described as follows

5n(dρ̂) :=
(
n+ k − 1

k − 1

)
ρ̂(n)ν(dρ̂).
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Under the following chart (6), the optimal measurements are denoted as:

5n(dθ) =
(
n+ k − 1

k − 1

)
|φ(θ)(n)〉〈φ(θ)(n)|ν(dθ) (5)

for θ ∈ {θ ∈ R2k−2|θi ∈ [0, 2π)16 j 6 k − 1, θj ∈ [0, π/2]}, where

φ(θ) :=



cosθ1

eiθk sinθ1 cosθ2

eiθk+1 sinθ1 sinθ2 cosθ3
...

eiθ2k−3 sinθ1 sinθ2 sinθ3 . . . sinθk−2 cosθk−1

eiθ2k−2 sinθ1 sinθ2 sinθ3 . . . sinθk−2 sinθk−1

 . (6)

The invariant measureν(dθ) described above is from [21, p 31]

ν(dθ) = (k − 1)!

πk−1
sin2k−3 θ1 sin2k−5 θ2 . . . sinθk−1 cosθ1 cosθ2 . . . cosθk−1 dθ1 dθ2 . . .dθ2k−2.

(7)

Lemma 1.If the deviation measureW is characterized asW(ρ, ρ̂) = h ◦ df s(ρ, ρ̂), we can
describe the maximum possible error of the optical measurement5n as:

DW,(n)(5n) = 2(k − 1)

(
n+ k − 1

k − 1

)∫ π
2

0
h(θ) cos2n+1 θ sin2k−3 θdθ.

For a proof, see appendix B.
Next, we asymptotically calculate the error of the optimal measurements5n in the third

order.

Theorem 4.When the deviation measureW is described asW = dγb , we can asymptotically
calculate the maximum possible error of the optimal measurement as:

lim
n→∞D

d
γ

b ,(n)(5n)n
γ

2 = 0(k − 1+ γ /2)
0(k − 1)

. (8)

Particularly, in the case ofγ = 2, we have

Dd2
b ,(n)(5n)n = (k − 1)n

n+ k = (k − 1)
∞∑
i=1

(
− k
n

)i
→ k − 1 asn→∞. (9)

When the deviation measure is defined by the square of the Fubini–Study distance, we can
asymptotically calculate the maximum possible error of the optimal measurement as:

Dd2
f s ,(n)(5n)n ∼= (k − 1)− 2

3
k(k − 1)

1

n
+ k(k − 1)

23k − 7

45

1

n2
asn→∞. (10)

The error of the sequence{5n}∞n=1 of the optimal measurements can be calculated in the
sense of large deviation as:

1

n
log(Prρ

(n)

5n
{ρ̂ ∈ P(H)|df s(ρ, ρ̂) > ε})

∼= log cos2 ε + (k − 2)
logn

n
+ (− log(k − 2)! + 2(k − 2) log(sinε)

−2 log(cosε))
1

n
+
(
k2− k − 2

2
+ (k − 2) cot2 ε

)
1

n2
asn→∞ (11)

where PrSM B denotes the probability ofB with respect to the probability measure
tr(M(dω)S) for a BorelB ⊂ �, a measurementM ∈M(�,H′) and a stateS ∈ S(H′).
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For a proof, see appendix C. The first term on the right-hand side of (11) coincides with
the logarithm of the fidelity [22].

In this paper,ε in equations (11) is called the admissible radius.
Since

lim
ε→0

log cos2 ε

ε2
= −1 (12)

we obtain the following large deviation approximation

lim
ε→0

lim
n→∞

1

ε2n
log(Prρ

(n)

5n
{ρ̂ ∈ P(H)|df s(ρ, ρ̂) > ε}) = −1. (13)

5. Semiclassical measurement

In this section, we consider measurements which allow the quantum correlation between
finite samples only. A measurementM on H(nm) is calledm-semiclassicalif there exists
an estimatorT on the probability spaceP(H)× · · · × P(H)︸ ︷︷ ︸

n

whose domain isP(H) such

that

M(B) =
∫
T −1(B)

5m(dρ1)⊗ · · · ⊗5m(dρn)︸ ︷︷ ︸
n

∀B ⊂ P(H). (14)

We compare the error betweenm-semiclassical measurements and the optimal measurement
5nm for nm samples of the unknown state as equations (10), (11) and (13).

In doing this comparison, we bear in mind asymptotic estimation theory in classical
statics. In classical statics, it is assumed that the sequence of estimators satisfies the
consistency.

Definition 4. A sequence{T (n)}∞n=1 of estimators on a probability space� is said to be
consistent with respect to a family{pθ |θ ∈ 2} of probability distributions on�, if it
satisfies the condition (15), where everyT (n) is a probability variable on the probability
space�× · · · ×�︸ ︷︷ ︸

n

whose domain is2

p
(n)
θ {dJ (T (n), θ) > ε} → 0 asn→∞ ∀θ ∈ 2, ∀ε > 0 (15)

wheredJ denotes the geodesic distance defined by the Fisher information metric andp
(n)
θ

denotes the probability measurepθ × · · · × pθ︸ ︷︷ ︸
n

on the probability space�× · · · ×�︸ ︷︷ ︸
n

.

It is well known that the following theorem establishes under the preceding consistency
[23, 24].

Theorem 5.If a sequence{T (n)}∞n=1 of estimators is a consistent estimator with respect to
a family {pθ |θ ∈ 2} of probability distributions on a probability space� which satisfies
some regularity, we then have the following inequalities

lim
n→∞ n

∫ ∫
. . .

∫
︸ ︷︷ ︸

n

d2
J (T

(n)(x1, x2, . . . , xn), θ)p
(n)
θ (dx1, . . . ,dxn) > dim2 (16)

lim
n→∞

1

n
log(p(n)θ {D(pT (n)‖pθ) > ε}) > −ε (17)

lim
ε→0

lim
n→∞

1

ε2n
log(p(n)θ {dJ (T (n), θ) > ε}) > − 1

2 (18)
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whereD(p‖q) denotes the information divergence of a probability distributionq with
respect to another probability distributionp defined by:

D(p‖q) :=
∫
�

(logp(ω)− logq(ω))p(ω)dω.

The lower bounds of (16) and (18) can be attained by the maximum likelihood estimator.
The lower bound of (17) can be attained by the maximum likelihood estimator when the
family {pθ |θ ∈ 2} is exponential, but generally cannot be attained.

For the comparison, we apply theorem 5 to the family of distributions{tr5m(dρ̂)ρ(m)|ρ ∈
P(H)} given by the measurement5m and the family of states{ρ(m)|ρ ∈ P(H)}. We
consider the sequence of measurements{T(n,m)}∞n=1 which corresponds to the consistent
estimator{T (n)}∞n=1 on the family of distributions{tr5m(dρ̂)ρ(m)|ρ ∈ P(H)}, whereT(n,m)
is the measurement onH(nm) defined by the estimatorT (n) and n data given by the
measurement5m ⊗ · · · ⊗5m︸ ︷︷ ︸

n

and the stateρ(nm). From the symmetry ofP(H) and

5m, the information divergence of a probability measure tr5m(dρ̂)ρ
(m)

1 with respect to
another a probability measure tr5m(dρ̂)ρ

(m)

2 is determined by the Fubini–Study distanceε
betweenρ1 andρ2. Thus, the divergence may be denoted byDm(ε). From lemma 2, the
geodesic distanced5m

with respect to Fisher information metric in the family of distributions
{tr5m(dρ̂)ρ(m)|ρ ∈ P(H)} is given by:

d5m
=
√

2mdf s.

Since dimP(H) = 2(k − 1), we have the following inequalities:

lim
n→∞ nmD

d2
f s ,(nm)(T(n,m)) = lim

n→∞ max
ρ∈P(H)

nm

∫
P(H)

d2
f s(ρ, ρ̂) tr(T(n,m)(dρ̂)ρ

(nm)) > k − 1 (19)

lim
n→∞

1

nm
log Prρ

(nm)

T(n,m)
{ρ̂ ∈ P(H)|df s(ρ, ρ̂) > ε} > −Dm(ε)

m
(20)

lim
ε→0

lim
n→∞

1

ε2nm
log Prρ

(nm)

T(n,m)
{ρ̂ ∈ P(H)|df s(ρ, ρ̂) > ε} > −1. (21)

The lower bound of (19) is consistent with the first term on the right-hand side of (10)
and the lower bound of (21) is consistent with the right-hand side of (13). When the
sequence of measurements{T (n)}∞n=1 corresponds to the maximum likelihood estimator, the
lower bounds of (19) and (21) can be attained. We have the following lemma concerning
the comparison of the lower bound−Dm(ε)

m
of (20) and the first term 2 log cosε on the

right-hand side of (11).

Lemma 2.We can calculate the divergenceDm(ε) and the distanced5m
as:

Dm(ε)

m
=

m∑
i=1

sin2i ε

i
→− log(1− sin2 ε) = − log cos2 ε asm→∞ (22)

d5m
=
√

2mdf s. (23)

Therefore,Dm(ε)
m

is monotone increasing with respect tom.

For a proof, see appendix D. Equation (22) infers that

0<
−m log cos2 ε −Dm(ε)

mε2m
→ 0 asε → 0 (24)

which means that the first term of (11) cannot be completely attained by a semiclassical
measurement. However, the first term of (10) and the left-hand side of (13) can be
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asymptotically attained by a 1-semiclassical measurement, i.e. they can be asymptotically
attained by measurements without using quantum correlations between samples. Thus,
in order to attain them asymptotically, it is sufficient to physically realize the optimal
measurement51 on a single sample. Indeed,51 is a random measurement as follows. To
denote51 as a random measurement, we will define the simple measurementEg(g ∈ SU(k))
whose measurable spaceP(H). For an elementg ∈ SU(k), the vectorsφ1(g), . . . , φk(g) in
H are defined as:

(φ1(g) . . . φk(g)) = g.
The measurementEg is defined as:

Eg(|φi(g)〉〈φi(g)|) = |φi(g)〉〈φi(g)|.
Therefore, the optimal measurement51 for a single sample can be described as the following
random measurement:

51 =
∫

SU(k)
Egµ(dg) (25)

whereµ is the invariant measure on SU(k) with µ(SU(k)) = 1. Therefore, in order to
realize the optimal measurement51, it is sufficient to realize the simple measurementEg
for any g ∈ SU(k).

6. Conclusion

We have compared two cases. One regards the system consisting of enough samples as the
single system, the other regards it as separate systems. Under this comparison, the error
mean squares of both cases asymptotically coincide in the first order with respect to the
Fubini–Study distance (see (10) and (19)). However, we leave the question of whether
they asymptotically coincide in the second order with respect to the Fubini–Study distance
to a future study. On the other hand, in view of the evaluation of large deviation, if the
allowable radius is finite, neither coincide (see (11) and (20)). However, if the allowable
radius goes to infinitesimal, both coincide (see (13) and (21)).

These results depend on the effect of a pure state. Therefore, it is an open question as
to whether the error mean squares of both cases asymptotically coincide in the first order in
another family. In the case of large deviations, the same question is also open in the limit
where the radius of allowable error goes to infinitesimal.

Appendix A. Proof of theorem 3

In this appendix, assume thatρ = |φ(0)〉〈φ(0)|. BecauseH(n)s is irreducible with respect
to the action of SU(k),

H(n)s =
{∑

i

aiVgi φ(0)
(n)|ai ∈ C, gi ∈ SU(k)

}
=
{∑

i

φ
(n)
i |φi ∈ H

}
. (26)

We assume thatW(ρ, ρ̂) = h(tr ρρ̂). As h is monotone decreasing, there exists a measure
h′ on [0, 1] such thath(x) = h′([x, 1]).
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The functionhβ on [0, 1] and the deviation measureWβ are defined as follows

hβ(x) :=
{

1 for x 6 β
0 for x > β

Wβ(ρ, ρ̂) := hβ(tr ρρ̂).
From lemma 3, for any measurement5 we have

DW,(n)ρ (5) =
∫

[0,1]
DWβ,(n)
ρ (5)h′(dβ).

From (26), it is sufficient to show the following for{φi} ⊂ H in the case ofW = Wβ .

tr Ŵβ(ρ)|
∑

i φ
(n)
i 〉〈

∑
i φ

(n)
i |

〈∑i φ
(n)
i |

∑
i φ

(n)
i 〉

> tr Ŵβ(ρ)|φ(0)(n)〉〈φ(0)(n)|. (27)

From lemma 4 it is sufficient for (27) to prove the following〈∑
i

φ
(n)
i

∣∣∣∣Ŵβ(ρ)

∣∣∣∣∑
i

φ
(n)
i

〉
· 〈φ(0)(n)| Id−Ŵβ(ρ)|φ(0)(n)〉

> 〈φ(0)(n)
∣∣∣∣Ŵβ(ρ)

∣∣∣∣φ(0)(n)〉 · 〈∑
i

φ
(n)
i

∣∣∣∣ Id−Ŵβ(ρ)

∣∣∣∣∑
i

φ
(n)
i

〉
. (28)

Remark that|〈φ(θ)|φ(0)〉|2 = cos2 θ1. From lemma 5, we obtain〈∑
i

φ
(n)
i

∣∣∣∣Ŵβ(ρ)

∣∣∣∣∑
i

φ
(n)
i

〉
= k′ · (k − 1)!

π(k−1)

∫ π
2

α

f1(θ1) cosθ1 sin2k−3 θ1 dθ1〈∑
i

φ
(n)
i

∣∣∣∣ Id−Ŵβ(ρ)

∣∣∣∣∑
i

φ
(n)
i

〉
= k′ · (k − 1)!

π(k−1)

∫ α

0
f1(θ1) cosθ1 sin2k−3 θ1 dθ1

〈φ(0)(n)|Ŵβ(ρ)|φ(0)(n)〉 = C
∫ π

2

α

cos2n+1 θ1 sin2k−3 θ1 dθ1

〈φ(0)(n)| Id−Ŵβ(ρ)|φ(0)(n)〉 = C
∫ α

0
cos2n+1 θ1 sin2k−3 θ1 dθ1

where

β := cos2 α

f1(θ1) :=
∫ π

2

0
. . .

∫ π
2

0︸ ︷︷ ︸
k−2

f2(θ1, . . . , θk−1)λ(dθ2 . . .dθk−1)

f2(θ1, . . . , θk−1) :=
∫ 2π

0
. . .

∫ 2π

0︸ ︷︷ ︸
k−1

∑
i,j

〈φi |φ(θ)〉n〈φ(θ)|φj 〉n dθk . . .dθ2k−2

C := k′ · (k − 1)!

π(k−1)

∫ 2π

0
. . .

∫ 2π

0︸ ︷︷ ︸
k−1

∫ π
2

0
. . .

∫ π
2

0︸ ︷︷ ︸
k−2

λ(dθ2 dθ3 . . .dθk−1)dθk . . .dθ2k−2

λ(dθ2, . . . , dθk−1) := sin2k−5 θ2 . . . sinθk−1 cosθ2 . . . cosθk−1 dθ2 . . .dθk−1.

Therefore, it is sufficient for equation (28) to show that forπ/2> θ1 > θ ′1 > 0

f1(θ1) sin2k−3 θ1 cos2n+1 θ ′1 sin2k−3 θ ′1 > f1(θ
′
1) sin2k−3 θ ′1 cos2n+1 θ1 sin2k−3 θ1.
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It suffices to verify that forθi ∈ [0, π2 ], 2 6 i 6 k − 1, π/2> θ1 > θ ′1 > 0

f2(θ1, θ2, . . . , θn−1)

cos2n θ1
> f2(θ

′
1, θ2, . . . , θn−1)

cos2n θ ′1
.

Thus, it is sufficient to prove that the following is monotone decreasing aboutθ1 for any
θ2, . . . , θk−1:

1

cos2n θ1

∫ 2π

0
. . .

∫ 2π

0︸ ︷︷ ︸
k−1

∑
i,j

〈φi |φ(θ)〉n〈φ(θ)|φj 〉n dθk . . .dθ2k−2. (29)

Letting

φi :=


eiψ1

i φ1
i

eiψ2
i φ2

i

...

eiψki φki


we find

〈φi |φ(θ)〉n
cosn θ1

=
(

eiψ1
i φ1

i +
k−1∑
j=2

ei(θk−2+j−ψji ) tanθ1 sinθ2 . . . sinθj cosθj+1φ
j

i

+ei(θ2k−2−ψk−1
i ) tanθ1 sinθ2 · · · sinθk−1φ

k
i

)n
.

Letting x := tanθ1, lemma 6 infers that (29) is monotone decreasing aboutθ1. The proof
is complete.

Lemma 3.If the deviation measureW(ρ, ρ̂) = h′([tr ρρ̂, 1]), then

DW,(n)ρ (5) =
∫

[0,1]
DWβ,(n)
ρ (5)h′(dβ). (30)

Proof. For the probability measureπ on P(H), we have∫
P(H)

W(ρ, ρ̂)π(dρ̂) =
∫
P(H)

h(tr ρρ̂)π(dρ̂)

=
∫
P(H)

∫
[0,1]

hβ(tr ρρ̂)h
′(dβ)π(dρ̂)

=
∫

[0,1]

(∫
P(H)

hβ(tr ρρ̂)π(dρ̂)

)
h′(dβ)

=
∫

[0,1]

(∫
P(H)

Wβ(ρ, ρ̂)π(dρ̂)

)
h′(dβ).

Substitutingπ(dρ̂) for tr(5(dρ̂)ρ(n)), we obtain (30). �

Lemma 4.Let H be any finite-dimensional Hilbert space. For any elementsφ,ψ ∈ H and
any self-adjoint operatorA onH, the following are equivalent
• 〈φ|A|φ〉〈φ|φ〉 >

〈ψ |A|ψ〉
〈ψ |ψ〉• 〈φ|A|φ〉〈ψ | Id−A|ψ〉 > 〈ψ |A|ψ〉〈φ| Id−A|φ〉.
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Lemma 5.We have〈∑
i

φ
(n)
i

∣∣∣∣Ŵβ(ρ)

∣∣∣∣∑
i

φ
(n)
i

〉
= k′ · (k − 1)!

π(k−1)

∫ π
2

α

f1(θ1) cosθ1 sin2k−3 θ1 dθ1〈∑
i

φ
(n)
i

∣∣∣∣ Id−Ŵβ(ρ)

∣∣∣∣∑
i

φ
(n)
i

〉
= k′ · (k − 1)!

π(k−1)

∫ α

0
f1(θ1) cosθ1 sin2k−3 θ1 dθ1

〈φ(0)(n)|Ŵβ(ρ)|φ(0)(n)〉 = C
∫ π

2

α

cos2n+1 θ1 sin2k−3 θ1 dθ1

〈φ(0)(n)| Id−Ŵβ(ρ)|φ(0)(n)〉 = C
∫ α

0
cos2n+1 θ1 sin2k−3 θ1 dθ1.

Proof. Ŵβ(ρ) is denoted as follows

Ŵβ(ρ) = k′
∫
P(H)

Wβ(ρ, ρ̂)ρ̂
(n)ν(dρ̂)

= k′
∫
{ρ̂∈P(H)| tr ρ̂ρ6β}

ρ̂(n)ν(dρ̂).

We obtain〈∑
i

φ
(n)
i

∣∣∣∣Ŵβ(ρ)

∣∣∣∣∑
i

φ
(n)
i

〉
=
〈∑

i

φ
(n)
i

∣∣∣∣k′ ∫{ρ̂∈P(H)| tr ρ̂ρ6β} ρ̂(n)ν(dρ̂)
∣∣∣∣∑

i

φ
(n)
i

〉
=
∑
i,j

k′
∫
{ρ̂∈P(H)| tr ρ̂ρ6β}

〈φ(n)i |ρ̂(n)|φ(n)j 〉ν(dρ̂)

=
∑
i,j

k′
∫
{ρ̂∈P(H)| tr ρ̂ρ6β}

〈φi |ρ̂|φj 〉nν(dρ̂)

= k′ · (k − 1)!

π(k−1)

∫ π
2

α

f1(θ1) cosθ1 sin2k−3 θ1 dθ1.

Similarly,〈∑
i

φ
(n)
i

∣∣∣∣ Id−Ŵβ(ρ)

∣∣∣∣∑
i

φ
(n)
i

〉
=
∑
i,j

k′
∫
{ρ̂∈P(H)| tr ρ̂ρ>β}

〈φi |ρ̂|φj 〉nν(dρ̂)

= k′ · (k − 1)!

π(k−1)

∫ α

0
f1(θ1) cosθ1 sin2k−3 θ1 dθ1

〈φ(0)(n)|Ŵβ(ρ)|φ(0)(n)〉 = k′
∫
{ρ̂∈P(H)| tr ρ̂ρ6β}

〈φ(0)|ρ̂|φ(0)〉nν(dρ̂)

= C
∫ π

2

α

cos2n+1 θ1 sin2k−3 θ1 dθ1

〈φ(0)(n)| Id−Ŵβ(ρ)|φ(0)(n)〉 = k′
∫
{ρ̂∈P(H)| tr ρ̂ρ>β}

〈φ(0)|ρ̂|φ(0)〉nν(dρ̂)

= C
∫ α

0
cos2n+1 θ1 sin2k−3 θ1 dθ1.

�
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Lemma 6.The following functionf (x) is monotone decreasing on [0,∞):

f (x) :=
m∑
a=1

m∑
b=1

∫ 2π

0
. . .

∫ 2π

0︸ ︷︷ ︸
k

(
c0
ae

id0
a + x

k∑
j=1

ei(θj+dja )cja

)n

×
(
c0
be

id0
b + x

k∑
j=1

e−i(θj+djb )cjb

)n
dθ1 . . .dθk

wherecjn, d
j
n are any real numbers.

Proof. The setKm
n is defined as follows

Km
n :=

{
I = (I1, · · · , Im) ∈ (N+,0)m

∣∣∣∣ m∑
j=1

Ij = n.
}
.

The numberC(I) is defined forI ∈ Km
n as sufficing the following condition:( m∑

j=1

xj

)n
=
∑
I∈Km

n

C(I)x
I0
1 . . . x

Im
m .

Therefore,(
c0
a + x

k∑
j=1

ei(θj+dja )cja

)n
=

∑
I∈Kk+1

n

C(I )eid0
a (c0

a)
I0eiI1(θ1+d1

a )(c1
a)
I1 . . .eiId (θk+dka )(cka)

Ik xn−I0.

Thus,

f (x) =
m∑
a=1

m∑
b=1

(2π)k
∑
I

C(I )eiI0(d
0
a−d0

b )(c0
ac

0
b)
I0eiI1(d

1
a−d1

b )

×(c1
ac

1
b)
I1 . . .eiIk(dka−dkb )(ckac

k
b)
Ik x2n−2I0

= (2π)k
∑
I

C(I )

m∑
a=1

m∑
b=1

ei(
∑k
j=0 Iid

i
a−
∑k
j=0 Iid

i
b)

×(c0
a)
I0 . . . (cka)

Ik (c0
b)
I0 . . . (ckb)

Ik x2n−2I0

= (2π)k
∑
I

C(I )D(I)x2n−2I0

where

D(I) :=
m∑
a=1

m∑
b=1

ei(
∑k
j=0 Iid

i
a−
∑k
j=0 Iid

i
b)(c0

a)
I0 . . . (cka)

Ik (c0
b)
I0 . . . (ckb)

Ik .

It is sufficient to showD(I) > 0. Letting

va := (c0
a)
I0 . . . (cka)

Ik

ya :=
k∑

j=0

Iid
i
a

wa,b := cos(ya − yb)
we have

D(I) =
m∑
a=1

m∑
b=1

vawa,bvb.
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Then

wa,b = cos(ya − yb) = cosya cosyb + sinya sinyb.

As {cosya cosyb} and {sinya sinyb} are nonnegative,{wa,b} is nonnegative matrix.
Therefore, we obtainD(I) > 0. �

Appendix B. Proof of lemma 1

DW,(n)(5n) =
∫
P(H)

h(df s(ρ, ρ̂) tr(5n(dρ̂)ρ
(n))

=
∫
P(H)

h(θ1)

(
n+ k − 1

k − 1

)
|〈φ(θ)(n)|φ(0)(n)〉|2ν(dθ)

=
∫ π

2

0
h(θ1)

(
n+ k − 1

k − 1

)
(k − 1)!

πk−1
cos2n+1 θ1 sin2k−3 θ1 dθ1

×
∫ 2π

0
· · ·
∫ 2π

0︸ ︷︷ ︸
k−1

∫ π
2

0
· · ·
∫ π

2

0︸ ︷︷ ︸
k−2

sin2k−5 θ2 · · · sinθk−1

× cosθ2 . . . cosθk−1 dθ2 . . .dθ2k−2

=
∫ π

2

0
h(θ1)

(
n+ k − 1

k − 1

)
(k − 1)!

πk−1
cos2n+1 θ1 sin2k−3 θ1 dθ1

×
∫ 1

0
x2k−5 dx . . .

∫ 1

0
x dx︸ ︷︷ ︸

k−2

·(2π)k−1

=
∫ π

2

0
h(θ)

(
n+ k − 1

k − 1

)
(k − 1)!

πk−1
cos2n+1 θ sin2k−3 θ dθ

(2π)k−1

2k−2(k − 2)!

= 2(k − 1)

(
n+ k − 1

k − 1

)∫ π
2

0
h(θ) cos2n+1 θ sin2k−3 θ dθ.

The proof is complete.

Appendix C. Proof of theorem 4

Definition 1 and lemma 1 infer that:

Dd
γ

b ,(n)(5n) = 2(k − 1)

(
n+ k − 1

k − 1

)∫ π
2

0
cos2n+1 θ sin2k−3+γ θ dθ. (31)

Since ∫ π
2

0
cosx θ siny θ dθ = 0(x+1

2 )0(
y+1

2 )

20(x+y2 + 1)
∀x, y ∈ R

we have

Dd
γ

b ,(n)(5n) = 2(k − 1)

(
n+ k − 1

k − 1

)
0(n+ 1)0(k − 1+ γ /2)

0(n+ k + γ /2)
= 0(n+ 1)0(k − 1+ γ /2)0(n+ k)
0(n+ k + γ /2)0(n+ 1)0(k − 1)
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= 0(n+ k)
0(n+ k + γ /2)

0(k − 1+ γ /2)
0(k − 1)

. (32)

Therefore we obtain (8) from the following formula of0 function:

lim
n→∞

0(n+ x)
0(n)nx

= 1.

Letting γ := 2, we obtain

Dd2
b ,(n)(5n) = 0(n+ k)

0(n+ k + 1)

0(k − 1+ 1)

0(k − 1)
= k − 1

n+ k .
Thus, we obtain (9).

Next, we will prove (10).θ2 can be expanded as:

θ2 =
∞∑
i=0

(2i − 2)!!

(2i − 1)!!

sin2i θ

i

where we put(2n)!! = 2n(2n − 2) . . .4 · 2, (2n − 1)!! = (2n − 1)(2n − 3) . . .3 · 1, 0!! =
(−1)!! = 1. From (32) we have

Dd2
f s ,(n)(5n) =

∞∑
i=0

(2i − 2)!!

(2i − 1)!! i
Dd2i

b ,(n)(5n)

=
∞∑
i=0

(2i − 2)!!

(2i − 1)!! i

i−1∏
j=0

k − 1+ j
n+ k + j

∼= (k − 1)
1

n
− 2

3
k(k − 1)

1

n2
+ k(k − 1)

23k − 7

45

1

n3
.

Thus we obtain (10). Lemma 1 infers that

log Prρ
(n)

5n
{ρ̂ ∈ P(H)|df s(ρ, ρ̂) > ε}

= log

(
(k − 1)

(
n+ k − 1

k − 1

)∫ cos2 ε

0
x(1− x)k−2 dx

)
. (33)

Therefore, it is sufficient for (13) to show that

log

(
n+ k − 1

k − 1

)
∼= (k − 1) logn− log(k − 1)! + 1

n

(k − 1)k

2
(34)

log

(∫ cos2 ε

0
x(1− x)k−2 dx

)
∼= 2n log cosε − logn+ 2(k − 2) log sinε − 2 log cosε

−1

n
(1+ (k − 2) cot2 ε). (35)

The left-hand side of (34) is calculated as:

log

(
n+ k − 1

k − 1

)
=

k−1∑
i=0

log
n+ i
i

= (k − 1) logn− log(k − 1)! +
k−1∑
i=1

log

(
1+ i

n

)
∼= (k − 1) logn− log(k − 1)! +

k−1∑
i=1

i

n

= (k − 1) logn− log(k − 1)! + 1

n

(k − 1)k

2
.
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Therefore, we have (34). The left-hand side of (35) is calculated as:

log

(∫ cos2 ε

0
x(1− x)k−2 dx − 2n log cosε

)
= log

(∫ cos2 ε

0

(
x

cos2 ε

)n
(1− x)k−2 dx

)
= log

(∫ 1

0
xn(1− cos2 x)k−2 1

cos2 ε
dx

)
= − 2 log cosε + log

( k−2∑
i=1

(
k − 2

i

)
(− cos2 ε)i

1

n+ i + 1

)

= − 2 log cosε − logn+ log

( k−2∑
i=1

(
k − 2

i

)
(− cos2 ε)i

1

1+ i+1
n

)
∼= − 2 log cosε − logn+ log

( k−2∑
i=1

(
k − 2

i

)
(− cos2 ε)i

(
1− i + 1

n

))
= − 2 log cosε − logn+ log((1− cos2 ε)k−2

−1

n
(1− cos2 ε)k−3(1− (k − 1) cos2 ε))

= − 2 log cosε − logn+ log(1− cos2 ε)k−2

+ log

(
1− 1

n

1− (k − 1) cos2 ε

1− cos2 ε

)
∼= − 2 log cosε − logn+ (k − 2) log(1− cos2 ε)− 1

n

1− (k − 1) cos2 ε

1− cos2 ε
.

We obtain (35).

Appendix D. Proof of lemma 2

From the symmetry ofP(H) and5m, we may assume thatρ1 = |φ0〉〈φ0|, ρ2 = |φε〉〈φε |.
First, we consider the case ofk = 2. For the following calculation, we prepare the following
equations:

|〈φε |φ(θ)〉|2n = (cos2 ε cos2 θ1+ sin2 θ1 sin2 ε + 2 cosε sinε cosθ1 sinθ1 cosθ2)
n (36)∫ 2π

0
log(1+ 2a cosθ + a2)dθ = 4πψ(|a|) log |a| (37)

where the functionψ is defined as:

ψ(x) =
{

1 x > 1

0 x < 0.

Paying attention to (5) and (7), we have

−D5m
(ρ
(m)

1 ‖ρ(m)2 )−m log cos2 ε

m

= − 1

m

(
(m+ 1)

∫
P(H)

log
|〈φ0|φ(θ)〉|2m
|〈φε |φ(θ)〉|2m |〈φ0|φ(θ)〉|2mν(dθ)+m log cosε

)
= − 2(m+ 1)

π
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×
∫ 2π

0

∫ π
2

0
log

(
cos2 θ1 cos2 ε

(cosθ1 cosε + sinθ1 cosθ2 sinε)2+ (sinθ1 sinθ2 sinε)2

)
× cos2m+1 θ1 sinθ1 dθ1 dθ2

= (m+ 1)

π

∫ π
2

0

∫ 2π

0
log(1+ 2 tanθ1 tanε cosθ2+ (tanθ1 tanε)2)dθ2

× cos2m+1 θ1 sinθ1 dθ1

= (m+ 1)

π

∫ π
2

0
4π log(tanθ1 tanε)ψ(tanθ1 tanε) cos2m+1 θ1 sinθ1 dθ1

= 2(m+ 1)
∫ π

2

π
2−ε

log(tan2 θ1 tan2 ε) cos2m+1 θ1 sinθ1 dθ1

= (m+ 1)
∫ sin2 ε

0
log

(
1− x
x

tan2 ε

)
xm dx. (38)

Substitutea = tan2 ε into (51) of lemma 8, then

(m+ 1)
∫ sin2 ε

0
xm log

(
1− x
x

tan2 ε

)
dx = − log cos2 ε −

m∑
i=1

sin2i ε

i
. (39)

From (38) and (39), we have

D5m
(ρ
(m)

1 ‖ρ(m)2 )

m
=

m∑
i=1

sin2i ε

i
. (40)

Therefore, we can prove (22).
Next, we consider the case ofk > 3. In this case, we have:

|〈φε |φ(θ)〉|2n = (cos2 ε cos2 θ1+ sin2 θ1 cos2 θ2 sin2 ε

+2 cosε sinε cosθ1 sinθ1 cosθ2 cosθk)
n. (41)

Paying attention to (5), (37) and lemma 7, we can calculate

−D5m
(ρ
(m)

1 ‖ρ(m)2 )−m log cos2 ε

m
= − 1

m

((
m+ k − 1

k − 1

)∫
P(H)

log

( |〈φ0|φ(θ)〉|2m
|〈φε |φ(θ)〉|2m

)
×|〈φ0|φ(θ)〉|2mν(dθ)+ 2m log cosε

)
= − 2(k − 1)(k − 2)

π

(
m+ k − 1

k − 1

)∫ 2π

0

∫ π
2

0

∫ π
2

0
log(cos2 θ1 cos2 ε)

×[(cos2 ε cos2 θ1+ sin2 θ1 cos2 θ2 sin2 ε

+2 cosε sinε cosθ1 sinθ1 cosθ2 cosθk)]
−1

× cos2m+1 θ1 sin2k−3 θ1 cosθ2 sin2k−5 θ2 dθ1 dθ2 dθk

= 2(k − 1)(k − 2)

π

(
m+ k − 1

k − 1

)
×
∫ π

2

0

∫ π
2

0

∫ 2π

0
log(1+ 2 tanθ1 cosθ2 tanε cosθk + (tanθ1 cosθ1 tanε)2) dθk

× cos2m+1 θ1 sin2k−3 θ1 cosθ2 sin2k−5 θ2 dθ1 dθ2

= 2(k − 1)(k − 2)

π

(
m+ k − 1

k − 1

)∫ π
2

0

∫ π
2

0
4πψ(tanθ1 cosθ2 tanε)

× log(tanθ1 cosθ2 tanε) cos2m+1 θ1 sin2k−3 θ1 cosθ2 sin2k−5 θ2 dθ1 dθ2. (42)
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Substitutinga := tan2 ε, s := sin2 θ2, y := cos2 θ1, then the condition tanθ1 cosθ2 tanε > 1
turns into the following conditions:

1− y

a(1− y) > x > 0
a

1+ a > y > 0.

Using (42) and (50), we have

−D5m
(ρ
(m)

1 ‖ρ(m)2 )−m log cos2 ε

m
= (k − 1)(k − 2)

(
m+ k − 1

k − 1

)
×
∫ a

1+a

0

(∫ 1− y

a(1−y)

0
xk−3 log

(
(1− x)a(1− y)

y

)
dx

)
ym(1− y)k−2 dy

= (k − 1)

(
m+ k − 1

k − 1

)∫ a
1+a

0

(
− log

(
y

a(1− y)
)
−

k−2∑
i=1

1

i

(
a − (1+ a)y
a(1− y)

)i)
×ym(1− y)k−2 dy

= − (k − 1)

(
m+ k − 1

k − 1

)∫ a
1+a

0
log

(
y

a(1− y)
)
ym(1− y)k−2 dy

−(k − 1)

(
m+ k − 1

k − 1

)
f

(
a

1+ a
)

(43)

wheref (x) is defined as:

f (x) :=
∫ x

0

k−2∑
i=1

1

i

(
1− y

x

)i
ym(1− y)k−2−i dy.

From lemma 9, the derivative off (x) can be calculated as:

f ′(x) =
∫ x

0

y

x2

( k−2∑
i=1

(
1− y

x

1− y
)i−1)

ym(1− y)k−3 dy

=
∫ x

0

y

x2

1−
(

1− y

x

1−y
)k−2

1− 1− y

x

1−y

 ym(1− y)k−3 dy

= 1

x(1− x)
∫ x

0

(
1−

(
1− y

x

1− y
)k−2

)
ym(1− y)k−2 dy

= 1

x(1− x)
∫ x

0
ym(1− y)k−2 dy − 1

x(1− x)
∫ x

0

(
1− y

x

)k−2
ym dy

= 1

x(1− x)
k−2∑
i=0

(
k − 2

i

)∫ x

0
(−1)iym+i dy − xm+1

x(1− x)
∫ 1

0
(1− t)k−2tm dt

= xm

x(1− x)
k−2∑
i=0

(
k − 2

i

)
(−x)i

m+ i + 1
− xm+1

x(1− x)
(
m+ k − 1

k − 2

)−1 1

m+ 1
. (44)

By (51) and lemma 9, the first term of (43) is calculated as:

−(k − 1)

(
m+ k − 1

k − 1

)∫ a
1+a

0
ym(1− y)k−2 log

(
y

a(1− y)
)

dy

= − (k − 1)

(
m+ k − 1

k − 1

) k−2∑
i=0

(
k − 2

i

)
(−1)i

∫ a
1+a

0
ym+i log

(
y

a(1− y)
)

dy
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= − (k − 1)

(
m+ k − 1

k − 1

) k−2∑
i=0

(
k − 2

i

)
(−1)i

m+ i + 1

×
(
− log(1+ a)+

m+i∑
j=1

1

j

(
a

1+ a
)j)

= − (k − 1)

(
m+ k − 1

k − 1

) k−2∑
i=0

(
k − 2

i

)
(−1)i

m+ i + 1

×
(
− log(1+ a)+

m∑
j=1

1

j

(
a

1+ a
)j
+

m+i∑
j=m+1

1

j

(
a

1+ a
)j)

= − (k − 1)

(
m+ k − 1

k − 1

)( k−2∑
i=0

(
k − 2

i

)
(−1)i

m+ i + 1

)

×
(
− log(1+ a)+

m∑
j=1

1

j

(
a

1+ a
)j)

−(k − 1)

(
m+ k − 1

k − 1

) k−2∑
i=0

i∑
j=1

(
k − 2

i

)
(−1)i

(m+ i + 1)(j +m)
(

a

1+ a
)j+m

= − (k − 1)

(
m+ k − 1

k − 1

)((
m+ k − 1

k − 2

)−1 1

m+ 1

)

×
(
− log(1+ a)+

m∑
j=1

1

j

(
a

1+ a
)j)
+ (k − 1)

(
m+ k − 1

k − 1

)
g

(
a

1+ a
)

= log(1+ a)−
m∑
j=1

1

j

(
a

1+ a
)j
− (k − 1)

(
m+ k − 1

k − 1

)
g

(
a

1+ a
)

(45)

whereg(x) is defined as:

g(x) :=
k−2∑
i=0

i∑
j=1

(
k − 2

i

)
(−1)i

(m+ i + 1)(j +m)x
j+m.

By lemma 9, the derivative ofg(x) is calculated as:

g′(x) =
k−2∑
i=0

(
k − 2

i

)
(−1)i

(m+ i + 1)

i∑
j=1

xj+m−1 =
k−2∑
i=0

(
k − 2

i

)
(−1)i

(m+ i + 1)
xm

1− xi
1− x

= xm

1− x
k−2∑
i=0

(
k − 2

i

)
(−1)i

(m+ i + 1)
− xm

1− x
k−2∑
i=0

(
k − 2

i

)
(−x)i

(m+ i + 1)

= xm

1− x
(
m+ k − 1

k − 2

)−1 1

m+ 1
− xm

1− x
k−2∑
i=0

(
k − 2

i

)
(−x)i

(m+ i + 1)
. (46)

From (44) and (46), we havef ′(x) = −g′(x). The definitions off (x) andg(x) mean that
f (0) = g(0) = 0. Then we obtainf (x) = −g(x). By (43) and (45), we have

−D5m
(ρ
(m)

1 ‖ρ(m)2 )− 2m log cosε

m
= (k − 1)(k − 2)

(
m+ k − 1

k − 1

)∫ a
1+a

0

×
(∫ 1− y

a(1−y)

0
xk−3 log

(
(1− x)a(1− y)

y

)
dx

)
ym(1− y)k−2dy
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= log(1+ a)−
m∑
j=1

1

j

(
a

1+ a
)j

−(k − 1)

(
m+ k − 1

k − 1

)(
g

(
a

1+ a
)
+ f

(
a

1+ a
))

= log(1+ a)−
m∑
j=1

1

j

(
a

1+ a
)j

= − log cos2 ε −
m∑
j=1

1

j
sin2j ε.

Then we obtain:

D5m
(ρ
(m)

1 ‖ρ(m)2 )

m
=

m∑
j=1

sin2i ε

i
.

We proved (22).
Next we will prove (23). We consider the tangent spaceTρP(H) at ρ := |φ(0)〉〈φ(0)|.

If c(t) is a curve onP(H) such thatc(0) = ρ, ċ denotes the element ofTρP(H) defined
by c(t). The Fubini–Study metricgf s is defined as:

gf s(ċ, ċ) :=
(

lim
t→0

df s(c(0), c(t))

t

)2

.

Therefore, it is sufficient to show that

J
ρ
5n
= 2ngf s.

Let c(t) := |φt 〉〈φt |, φt := φ(t, 0, . . . ,0). (See equation (6).) Becausegf s(ċ, ċ) = 1, it is
sufficient to prove that

J
ρ
5n
(ċ, ċ) = 2n.

We assume thatk > 3. From (41), we have(
d

dt
log(|〈φt |φ(θ)〉|2n)|t=0

)2

|〈φ0|φ(θ)〉|2n = 4n2 cos2n−2 θ1 sin2 θ1 cos2 θ2 cos2 θk. (47)

By (47) and (49), we have:(
m+ k − 1

k − 1

)∫
P(H)

(
d

dt
log(|〈φt |φ(θ)〉|2m)|t=0

)2

|〈φ0|φ(θ)〉|2mν(dθ)

= 2(k − 1)(k − 2)

π

(
m+ k − 1

k − 1

)
4m2

∫ π
2

0
cos2n−1 θ1 sin2k−1 θ1 dθ1

×
∫ π

2

0
cos3 θ2 sin2k−5 θ2 dθ2

∫ 2π

0
cos2 θk dθk

= 2(k − 1)(k − 2)

π

(
m+ k − 1

k − 1

)
4m2 (m− 1)!(k − 1)!

2(m+ k − 1)!

1!(k − 3)!

2(k − 1)!
π

= 2m. (48)

We obtain (23). In the case ofk = 2, we can similarly prove (23).
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Lemma 7.If k > 3, we then have∫
P(H)

f (θ1, θ2, θk)ν(dθ) = 2(k − 1)(k − 2)

π

∫ 2π

0

∫ π
2

0

∫ π
2

0
f (θ1, θ2, θk)

× cosθ1 sin2k−3 θ1 dθ1 cosθ2 sin2k−5 θ2 dθ2 dθk. (49)

Proof. From (7) the left-hand side of (49) is calculated as:∫
P(H)

f (θ1, θ2, θk)ν(dθ) = (k − 1)!

πk−1

∫ 2π

0

∫ π
2

0

∫ π
2

0
f (θ1, θ2, θk)

× cosθ1 sin2k−3 θ1 dθ1 cosθ2 sin2k−5 θ2 dθ2 dθk

×
∫ π

2

0
. . .

∫ π
2

0︸ ︷︷ ︸
k−3

sin2k−7 θ3 . . . sinθk−1 cosθ3 · · · cosθk−1 dθ2 . . . dθk−1

×
∫ 2π

0
. . .

∫ 2π

0︸ ︷︷ ︸
k−2

dθk+1 . . .dθ2k−2

=
∫ 2π

0

∫ π
2

0

∫ π
2

0
f (θ1, θ2, θk) cosθ1 sin2k−3 θ1 dθ1 cosθ2 sin2k−5 θ2 dθ2 dθk

× (k − 1)!

πk−1

∫ 1

0
x2k−7 dx . . .

∫ 1

0
x dx︸ ︷︷ ︸

k−3

·(2π)k−2

=
∫ 2π

0

∫ π
2

0

∫ π
2

0
f (θ1, θ2, θk) cosθ1 sin2k−3 θ1 dθ1 cosθ2 sin2k−5 θ2 dθ2 dθk

× (k − 1)!

πk−1

(2π)k−2

2k−3(k − 3)!

= 2(k − 1)(k − 2)

π

∫ 2π

0

∫ π
2

0

∫ π
2

0
f (θ1, θ2, θk)

× cosθ1 sin2k−3 θ1 dθ1 cosθ2 sin2k−5 θ2 dθ2 dθk.

We then obtain (49). �

Lemma 8.The following integral can be calculated as:∫ 1−a

0
xm log

(
1− x
a

)
dx = 1

m+ 1

(
− loga −

m+1∑
i=1

(1− a)i
i

)
(50)

∫ a
1+a

0
xm log

(
x

a(1− x)
)

dx = 1

m+ 1

(
− log(1+ a)+

m∑
i=1

1

i

(
a

1+ a
)i)

. (51)

Proof. Equation (50) is derived by∫ α

0
xm log(1− x)dx = 1

m+ 1

(
(αm+1− 1) log(1− α)−

m+1∑
i=1

αi

i

)
. (52)
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Also, equation (51) is derived by (52) and the following:∫ α

0
xm logx dx = 1

m+ 1

(
αm+1

(
logα − 1

m+ 1

))
. (53)

�

Lemma 9.We have the following equations:
n∑
i=0

(
n

i

)
(−1)i

m+ i =
∫ 1

0
xm−1(1− x)n dx =

(
m+ n
n

)−1 1

m
. (54)

It is easily derived.
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