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Abstract. The optimization of measurement far samples of pure states are studied. The
error of the optimal measurement fersamples is asymptotically compared with the one of the
maximum likelihood estimators from data given by the optimal measurement for one sample.

1. Introduction

Recently, there has been a rise in the necessity for studies about statistical estimation
for the unknown state, related to the corresponding advance in measuring technologies
in quantum optics. An investigation including both quantum theory and mathematical
statistics is necessary for an essential understanding of quantum theory because it has
statistical aspects [1, 2]. Therefore, it is indeed important to optimize the measuring process
with respect to the estimation of the unknown state. Such research is known as quantum
estimation, and was initiated by Helstrom in the late 1960s, originating in the optimization
of the detecting process in optical communications [1]. In the classical statistical estimation,
one searches for the most suitable estimator for which probability measure describes the
objective probabilistic phenomenon. In quantum estimation, one searches for the most
suitable measurement for which density operator describes the objective quantum state.

Contained among important results are three estimation problems. The first is of the
complex amplitude of coherent light in thermal noise and the second is of the expectation
parameters of quantum Gaussian state. The former was studied by Yuen and Lax [3] and
the latter by Holevo [2]. These studies discovered that heterodyning is the most suitable
for the estimation of the complex amplitude of coherent light in thermal noise. The third
is a formulation of the covariant measurement with respect to an action of a group. It
was studied by Holevo [2, 4]. In the formulation, he established a quantum analogue of
Hunt—Stein theorem.

Quantum estimation, was first used in the evaluation of the estimation error of a single
sample of the unknown state as it had advanced in connection with the optimization of
the measuring process in optical communications. Thus, early studies were lacking in
asymptotic aspects, i.e. there was little research with respect to reducing the estimation
error by quantum correlations between samples.

Recently, studies concerning the estimation of the unknown state have attracted many
physicists [5-8]. Some of them were drawn by the variation of the measuring precision
with respect to the number of samples of the unknown state [9, 10].
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Nagaoka [11] studied, for the first time, asymptotic aspects of quantum estimation. He
paid particular attention to the quantum correlations between samples of the unknown state,
and studied the relation between the asymptotic estimation and the local detection of a
one-parameter family of quantum states.

In the early 1990s, Fujiwara and Nagaoka [12—14] studied the estimation problem for a
multiparameter family consisting of pure states. They pioneered studies into the estimation
problem of the complex amplitude of noiseless coherent light. However, there had been
some studies with respect to that of coherent light in thermal noise. The research found that
heterodyning is the most suitable for the estimation of the complex amplitude of noiseless
coherent light. In 1996, Matsumoto [15] established a more general formulation of the
estimation for a multiparameter family consisting of pure states. Moreover in 1991, Nagaoka
[16] treated the estimation problem for two-parameter families of mixed states in 521 spin-
system, and in 1997 Hayashi [17, 18] treated it for three-parameter families of mixed states
in a spin—% system. However, there are no asymptotic aspects in these works concerning
multiparameter families. There is more need of this type of investigation into one- and
multiparameter families.

Can quantum estimation reduce the estimation error by using the quantum correlations
between samples, under the preparation of sufficient samples of the unknown state? To
answer this question, in this paper, we treat a family, consisting of pure states on a Hilbert
spaceHt under the preparation of samples of the unknown state, with the estimation
problem. In section 2, we use, as a tool, the composite system consistingasfples as
a single system. The quantum i.i.d. condition is introduced as the quantum counterpart
of the independent and identical distributions condition (3). In section 3, we review
Holevo's result concerning covariant measurements which will be used in the following
sections. In section 4, we apply Holevo's result to the optimization of measurements on the
composite system, which results in obtaining the most suitable measurement (theorem 3).
We asymptotically calculate the estimation error by the optimal measurement in the sense
of both the error mean square and large deviation (see (9)—(11) and (13)). The first term
of the right-hand side of (10) is consistent with the value conjectured from the results in
Fujiwara and Nagaoka [14] and Matsumoto [15]. However, the optimal measurement may
be too difficult for modern technology to realize when using more than one sample.

In section 5, we use this estimation problem under the following guidelines. The samples
are divided into pairs consisting of a maximummfsamples. By measuring each pair with
the optimal measurement of section 4, we create some data. The estimated value is given by
manipulating these data. The restricted conditiom-isemiclassical (see (14)). We compare
anm-semiclassical measurement with the optimal measurement of section 4 with respect to
the estimation error under the preparation of a sufficient amount of samples. When we use
the maximum likelihood estimator to manipulate the data, the error mean square of both
asymptotically coincide in the first order (see (10) and (19)). However, when the radius
of allowable errors is finite, the error of large deviations in the latter type is smaller than
that in the former type (see (11) and (20)). Both coincide in the case of the maximum
likelihood estimator under the limit where the radius goes to infinitesimal (13), (21). Can
we asymptotically realize a small estimation error as the optimal measurements in section 4
has? It is, physically, sufficient to construct the optimal measurement for one sample. In
section 5, we show how to construct it (see (25)).

Most of the proofs of this paper are given in the appendices. In view of multiparameter
families of mixed states in spié—system, Hayashi [19] discussed the same problem using

T WhereH denotes a finite-dimensional Hilbert space which corresponds to the physical system of interest.
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Cranmér—Rao-type bound.

2. Pure staten-i.i.d. model

In this section, we use the mathematical formulation of the estimation for pure states. Let
k be the dimension of the Hilbert spagg andP(H) be the set of pure states 6t

In quantum physics, the most general description of a quantum measurement is
probability given by the mathematical concept ofpasitive operator-valued measure
(POVM) [1, 2] on the system of state space. GenerallyQ2ifis measurable space, a
measuremend/ satisfies the following

M(B) = M(B)* MB)>0 M®=0 M) =Id onHYB C Q
M(U; B;) = Z M(B;) for B N B; = B(i # j) {B;} is countable subsets 6f.

In this paper M (2, H) denotes the set of POVMs ¢H whose measurable set §&. A
measuremend € M (2, H) is said to be simple ifM(B) is a projection for any Borel
B C Q. A measuremend is random if it is described as a convex combination of simple
measurements. A random measuremint ", a;M; (M; is simple ands; > 0) can be
realized when every measuremett is taken with the probability:;.

In this paper, we consider measurements whose measurable Bét{js since it is
known that the unknown state is included{H).

Next, we define two distances characterizing the homogeneous Biate

Definition 1. The Fubini—Study distancgy, (which is the geodesic distance of the Fubini—
Study metric) is defined as:

cosdy,(p, p) = V1 pp 0<dys(p, p) <
The Bures distancé, is defined in the usual way:

dp(p, p) ==+ 1—trpp. 2

It was introduced by Bures [20] in a mathematical context.

. 1)

N

Let W(p, o) be a measure of deviation of the measured valifeom the actual valug,
then we have the following equivalent conditions.

o W(p, p) = Wi(gpg*, 808" )Vp, Vo € P(H)¥Vg € SU (k).

e There exists a functioh on [0, 1] such thatW (p, p) = h o d,(p, p).

It is natural to assume that a deviation measitép, o) is monotone increasing with
respect to the Fubini—Study distandg.

If Ha, ..., H, aren Hilbert spaces which correspond to the physical systems, then their
composite system is represented by the tensor Hilbert space:

HD =H, ® - @ H, :®Hl.,
i=1

Thus, a state on the composite system is denoted by a density operatorH™. In
particular ifn element system§H;} of the composite systerit™ are independent of each
other, there exists a density on H; such that

n
P =p1®-®py =) pi.
i=1
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The condition:
Hi=-=H,=H,p1=-=pp=p (3)

corresponds to the independent and identically distributed (i.i.d.) condition in the classical
case. In this paper, we use this estimation problem under condition (3), called the quantum
i.i.d. condition. This condition means that identiegakamples are independently prepared.
The model{p™ = p®--- @ plp € P(H)} is calledn-i.i.d. model. Asp is a pure state,

D e ——

H™ and p™ are simplified as follows. Letting = |¢){(¢| € P(H), we have

p(n) — |¢(n))(¢(n)| ¢(ﬂ) =R Q.

Because all of the vectorg™ are included inn-times symmetric tensor space, for any
measurementM e M(Q, H™) on the n-times tensor spacé{™, the measurement
M(dw) = P, M(do) Py € M(Q, H™) on then-times symmetric tensor spade”
satisfies that:

tr M (dw)p™ = tr M (dw)p™ VpeH

where H denotes the:-times symmetric tensor space @t. Therefore, all possible
measurements can be regarded as element$16P(H), H”). The mean error of the
measurementl € M(P(H), H{™) with respect to a deviation measuié(p, 5), provided
that the actual state is, is equal to

DM = | W(p, p)tr(II(dp)p™).
P(H)

In minimax approach the maximum possible error with respect to a deviation measure
W(p, p)

DY (1) ;= max D)™ (1)
peP(H)

is minimized.
3. Quantum Hunt-Stein theorem

In this section, the quantum Hunt-Stein theorem, established by Holevo [2, 4], is
summarized. LeG be a compact transitive Lie group of all transformations on a compact
parametric se®, and{V,} a continuous unitary irreducible representationGoin a finite-
dimensional Hilbert spacg(’ := C¥, and . a o-finite invariant measure on group such

that u(G) = 1. In this section, we consider the following measurement condition.

Definition 2. A measuremenIl € M(©, H’) is covariant with respect t¢V,} if
VITI(B)V, = T1(By-1)

for any g € G and any BorelB C ®, where
B, :={g0|0 € B).

M(®, V) denotes the set of covariant measurements with respdét, jo

Covariant measurements are characterized by the following theorem.
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Theorem 1The mapV? from the setS(H’) of densities or’ to M(®, V) is surjective
for any 0 € ®, where a POVMV?(P) is defined as follows

VO(P)(B) := k// Ve PV 1u(dg) VB € B(O)
{g0eB}

forany P € S(H').

In this section, we use the following condition for a family of states.

Definition 3. The family is called covariant under the representafigy} of groupG acting
on @, if

Seo = VeSoVi V8 €©,¥geG.

Assuming that the object is prepared in one of the stgigé € ®} but the actual value af

is unknown, then the difficulty is estimating this value as close as possible to a measurement

on the object. We shall solve this problem by means of quantum statistical decision theory.
Let W(0, §) be a measure of deviation of the measured valdeom the actual value

6. It is natural to assume tha¥ (¢, §) is invariant:

W, 0) = W(gh, gb) V6,V0 € ©,Vg € G. (4)

The mean error of the measureménte M (O, H') with respect to a deviation measure
W0, 0), provided that the actual state §s, is equal to

Dy 5 (1) :=/ W (6, 6) tr(T1(dd) Sy).
(C]

Following the classical statistical decision theory, we can form two functiona'ofjiving
a total measure of precision of the measureniént

In Bayes’ approach we take the meanZ®f with respect to a given prior distribution
(d9). The measurement minimizing the resulting functional:

DY (1) :=/Dy’5(ﬂ)n(d€)
®

is called Bayesian. This quantity represents the mean error in the situation where

random parameter with known distributiand9). In particular, as®, G are compact and
‘nothing is known’ abou®, it is natural to take foer(df) the ‘uniform’ distribution, i.e.

normalized invariant measurgd?) defined as follows

v(B) ‘= 1u({gf € B}).

It is independent of the choice éfe B.
In minimax approach the maximum possible error with respect to a deviation measure
W (0, 0)

DY5(11) := maxD,* (1)
0e®
is minimized. The minimizing measurement is called minimax.
BecauseG is compact, we shall show that in the covariant case the minima of Bayes

and minimax criteria coincide and are achieved on a covariant measurement. We obtain the
following quantum Hunt—Stein theorem [2, 4]. It is easy to prove the theorem.

Theorem 2 For a covariant measuremdiite M(®, V), we obtain the following equations:

D% (1) = DS (1) = D5 (1).
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ForIT € M(®,H’), denote
M, (B) = V,I1(By) V' for B € B(©).

Introducing the ‘averaged’ measurement

M(B) := / M-+(B)p(dg)
G

we have

DYS(f) = / DYS (M, 1)pu(dg) = DVS (1),

G

Thus,

pYV-S(m) = DA () = D)5 (1).
In this case, minimax approach and Bayes’ approach with respectfo are equivalent.
Therefore we minimize the following

Dy S o V(P) = k’/ W (. g6) tr SyV, PV u(dg) = trwe)P

G

where

W®) : =k’/ W (6, g0) VSV, pu(dg)
G

:k’/ W (8, 0)S;v(dd).
(€]

Thus, it is sufficient to consider the following minimization:

min tr W(@)P = min trW(®)P.
PeS(H) PEP(H))

4. Optimal measurement in pure staten-i.i.d. model

In this section we apply the theory of section 3 to the problem of section 2.
We let

® = P(H) H = H" G = SU(k) S, = p™.
Then, the invariant measuteon P(H) is equivalent to the measure defined by the volume

bundle induced by the Fubini—Study metric. We let the acfigg} of G = SU(k) to H
be the tensor representation of the natural representation. In this case, we haV fgl).

Theorem 3If a deviation measuré¥(p, p) is monotone increasing with respect to the
Fubini-Study distance;,, we find

min trW(p)Po = tr W(p)p™.

PoeP(H")
For a proof see appendix A. Thug/(p™) is the optimal measurement with respect to a
deviation measuréV (p, p). The optimal measurement is independent of the choice of
and W since VPO(pé”)) = V?(p™). This optimal measurement is denoted Hy and is
described as follows

n n+k—1
Hn(dp) = <

A(n) A
E—1 )p v(dp).
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Under the following chart (6), the optimal measurements are denoted as:

k —
I, (d9) = (”: . )|¢>(9>(">><¢(0><">|v<d9> (5)
for 0 € {0 e R%*729;, € [0,27)1 < j < k—1,0; € [0, 7/2]}, where
Cc0SsH;

€% sing; coso,
g%+ sing; sind, coshs
¢ (0) = : . (6)
€23 5inf; sind, sinbs .. . SiNGy_ COSH_1
g%-2 sing, sind, sinbs . . . SiNB,_» SiNB;_1
The invariant measure(d?) described above is from [21, p 31]
(k 1)

SIHZk 8 61 SII"IZk 5 6s.. Sin@k_]_ C0SH1 C0SH, ... COSHr_1 d91 d92 e d92k_2.
Q)

Lemma 1.If the deviation measur® is characterized a®¥ (p, p) = hod(p, p), We can
describe the maximum possible error of the optical measuremgrats:

DV (T1,) = 2(k — 1) <n k- 1) / h(6) cos" ™ ¢ sir* 30 da.
0

v(dh) =

k—1
For a proof, see appendix B.

Next, we asymptotically calculate the error of the optimal measurenigénts the third
order.

Theorem 4When the deviation measub# is described a® = d; , we can asymptotically
calculate the maximum possible error of the optimal measurement as:

. Thk—1+7y/2
lim D4 (11,0t = LEZ LY/ ®)
n—00 'k—1)

Particularly, in the case of = 2, we have

DEO (M, n = (kn Jr1)n k — 1)2 <_E> — k-1 asn — oo. 9

When the deviation measure is deflned by the square of the Fubini—-Study distance, we can
asymptotically calculate the maximum possible error of the optimal measurement as:

23k 71

B (T = (k — 1) — —k(k 1) +k(k—1) =
n

asn — oo. (10)

The error of the sequendél,} 2, of the optimal measurements can be calculated in the
sense of large deviation as:

1 (n)
o |09(Pfﬁ,, {6 € P(H)|dss(p, p) = €})
~ logco$e + (k — 2)@ + (—log(k — 2)! + 2(k — 2) log(sine)
n
2 _ L _
—2log(cose)) } + <k—k2 + (k —2)cof e) iz asn — oo (11)
n 2 n

where P§, B denotes the probability ofB with respect to the probability measure
tr(M (dw)S) for a Borel B C 2, a measuremen € M (2, H') and a state§ € S(H/).
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For a proof, see appendix C. The first term on the right-hand side of (11) coincides with
the logarithm of the fidelity [22].

In this paperg in equations (11) is called the admissible radius.

Since

|
jm 109608 € __; (12)
e—0 €

we obtain the following large deviation approximation

im lim = 10g(PEy" (5 € P(H)Idys(p, 3) > ) = —1. 13)

e—>0n—>00 €n

5. Semiclassical measurement

In this section, we consider measurements which allow the quantum correlation between
finite samples only. A measuremeht on H"™ is calledm-semiclassicalif there exists
an estimatorT on the probability spac®(H) x --- x P(H) whose domain i$P(H) such

n

that
T-4(B)

n
We compare the error betweensemiclassical measurements and the optimal measurement
I1,,, for nm samples of the unknown state as equations (10), (11) and (13).
In doing this comparison, we bear in mind asymptotic estimation theory in classical
statics. In classical statics, it is assumed that the sequence of estimators satisfies the
consistency.

Definition 4. A sequence{T ™}, of estimators on a probability space is said to be
consistent with respect to a familyp,|60 € ®} of probability distributions on<, if it
satisfies the condition (15), where every” is a probability variable on the probability
space2 x --- x  whose domain 9

—— e’

PN (T™,0) > €} — 0 asn — oo V6 € ®,Ve > 0 (15)

whered; denotes the geodesic distance defined by the Fisher information metripgﬁnd
denotes the probability measupg x - - - x py on the probability spac x --- x Q.
D e — D e —

It is well known that the following theorem establishes under the preceding consistency
[23, 24].
Theorem 51f a sequencg7 ™}, of estimators is a consistent estimator with respect to

a family {py|60 € ©} of probability distributions on a probability spa€e which satisfies
some regularity, we then have the following inequalities

lim n//.../di(ﬂ")(xl,xz,...,xn),e)pg”(dxl,...,dxn> > dim® (16)
—— —

im L log(p™ (D >e) > — 17

Jm og(py {D(prwllpe) > €}) = —¢ (7)

1

lim lim ——log(py”{d;(T™,0) > €}) > —3 (18)

e—>0n—00 €4
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where D(pllq) denotes the information divergence of a probability distributiprwith
respect to another probability distributigndefined by:

D(pllg) == fQ (log p() — 109¢ () p(w)do.

The lower bounds of (16) and (18) can be attained by the maximum likelihood estimator.
The lower bound of (17) can be attained by the maximum likelihood estimator when the
family {py|6 € ®} is exponential, but generally cannot be attained.

For the comparison, we apply theorem 5 to the family of distributi@nE.,, (dp)o™ |p €
P(H)} given by the measuremeiil,, and the family of stategp™|p € P(H)}. We
consider the sequence of measuremdfis,,}°2, which corresponds to the consistent
estimator{7™}>, on the family of distributiongtr I1,,(d5) o™ |p € P(H)}, whereT,

is the measurement oR{"" defined by the estimator ™ and n data given by the
measurement],, ® --- ® I1,, and the stateo®™”. From the symmetry ofP(H*) and

I1,,, the information divergence of a probability measure’[,);r(dp)p('”’ with respect to
another a probability measurenpn(dp)p(’”) is determined by the Fubini—Study distance
betweenp; and p,. Thus, the divergence may be denotedBy(e¢). From lemma 2, the
geodesic distancéy, with respect to Fisher information metric in the family of distributions
{trI1,,,(dp) o™ |p € P(H)} is given by:

dn, = v2md;,.

m

Since dimP(H) = 2(k — 1), we have the following inequalities:

n—00 n—00 peP(H)

lim nm D% "™ (Tym) = lim max nm / d? (o, D)t (Timy(dp)p"™) =k — 1 (19)
P(H)

D
im = 1og Py 5 € P(Hldyy(p, §) > ) >~ (20)
1
lim lim g log Pl‘T’ {/3 € P(H)|dss(p, p) = €} > —1. (21)

e—>0n—o0 €

The lower bound of (19) is consistent with the first term on the right-hand side of (10)
and the lower bound of (21) is consistent with the right-hand side of (13). When the
sequence of measuremefs™}> ; corresponds to the maximum likelihood estimator, the
lower bounds of (19) and (21) can be attained. We have the following lemma concerning
the comparison of the lower bouneIDmT“) of (20) and the first term 2log ceson the
right-hand side of (11).

Lemma 2.We can calculate the divergends, (¢) and the distancéy, as:

D,, s n2’

(6) - Z ! —log(1 — sirfe) = —log cog e asm — 00 (22)
dn,, = v 2mdjy;. (23)
Therefore, 22 s monotone increasing with respectrto

For a proof, see appendix D. Equation (22) infers that

—mlogcoge — D, (¢)
2m

0< -0 ase - 0 (24)

me
which means that the first term of (11) cannot be completely attained by a semiclassical
measurement. However, the first term of (10) and the left-hand side of (13) can be
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asymptotically attained by a 1-semiclassical measurement, i.e. they can be asymptotically
attained by measurements without using quantum correlations between samples. Thus,
in order to attain them asymptotically, it is sufficient to physically realize the optimal
measuremenkl; on a single sample. Indeefl; is a random measurement as follows. To
denotell; as a random measurement, we will define the simple measuréipente SU(k))

whose measurable spafg’). For an elemeng € SU(k), the vectorspi(g), ..., ¢r(g) in

‘H are defined as:

(P1(8) - .- #x(8)) = g.

The measuremerf, is defined as:

E¢(19i(8)) (i () = 19i(8)) (i ()]

Therefore, the optimal measuremé&nt for a single sample can be described as the following
random measurement:

My = f E,u(dg) (25)
SU(k)

where u is the invariant measure on $t with u(SU(k)) = 1. Therefore, in order to
realize the optimal measuremellt, it is sufficient to realize the simple measuremént
for any g € SU(k).

6. Conclusion

We have compared two cases. One regards the system consisting of enough samples as the
single system, the other regards it as separate systems. Under this comparison, the error
mean squares of both cases asymptotically coincide in the first order with respect to the
Fubini-Study distance (see (10) and (19)). However, we leave the question of whether
they asymptotically coincide in the second order with respect to the Fubini—Study distance
to a future study. On the other hand, in view of the evaluation of large deviation, if the
allowable radius is finite, neither coincide (see (11) and (20)). However, if the allowable
radius goes to infinitesimal, both coincide (see (13) and (21)).

These results depend on the effect of a pure state. Therefore, it is an open question as
to whether the error mean squares of both cases asymptotically coincide in the first order in
another family. In the case of large deviations, the same question is also open in the limit
where the radius of allowable error goes to infinitesimal.

Appendix A. Proof of theorem 3

In this appendix, assume that= |¢(0))(¢(0)|. BecauseH™ is irreducible with respect
to the action of Sk),

HM = { Y aiVe (0 ®la; € C, g € SU(k)}

= { Y o"igi € H}. (26)

We assume thatV/ (o, p) = h(tr pp). As h is monotone decreasing, there exists a measure
k' on [0, 1] such thath(x) = A'([x, 1]).
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The functionhg on [0, 1] and the deviation measuig are defined as follows

1 forx < B
hg(x) =
0 forx > B8

Wg(p, p) := hg(tr pp).
From lemma 3, for any measuremditwe have

D, (1) 2/[0 ]vaf"(")(l'l)h/(dﬂ).
1

From (26), it is sufficient to show the following fde;} C H in the case oW = W;.

tr We (o)l Y, 6 ) (Y, o)
(MY 6™

From lemma 4 it is sufficient for (27) to prove the following

=t

> tr Ws(0) | (0)™) (¢ (0)™)]. (27)

¢§")> (P (0™ 1d —Wp ()| (O)

> (p(O)™

W (p)‘¢<0)<">> : <Z¢§">

,- > (28)
Remark that (¢ (0)|¢ (0))|?> = cos 6;. From lemma 5, we obtain

(S )< £

7*=D
(n)
(ot
i

(GO |Ws ()¢ (O™ = C / * cog g, sir? 36, doy

f * 1(61) costy sin? =3 6, d,

. K- (k=1 [¢ _
Id —Wﬂ(p)' Z¢§”>> = %/ f1(61) cosby si* 20, do,
i 0

(¢(0)™]1d —=Ws(p)|p(0)™) = C / " co g, s 36, doy
0

where

B :=cofu

f1(61) = fi.../? f2(01, ..., 0k_)A(dO,. .. dO_1)
0 0

k—2

27 2r
f2(01, ..., Ok-1) 32/ / Z(¢i|¢(9)>"<¢(9)|¢j>" dby ... doxy_>
-

k—1)!
C .= ]T((k ) ) / / / / )»(d@g d93 d@k 1)d8k d92k 2

A(dby, ..., dOi_q) 1= smz" 502...S|n0k_1 COSAy . .. COSH;_1 005 . .. AG;_1.
Therefore, it is sufficient for equation (28) to show that figf2 > 6, > 6; > 0
f1(61) sir®* =36, cog" 1 6; sin* 2 0; > f£1(0;) si“ 3 0; cos" T oy sin?* 36,
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It suffices to verify that fom; € [0, 7], 2<i <k—-1,7/2>61>6; >0

fo0 02+ O0-1) _ L2002 O1)
cog" 6, - cog" 6; '

Thus, it is sufficient to prove that the following is monotone decreasing afofdr any
6o, ..., 0_1:

1 2 2
g | [ S eeis) b e (29)
1J0 0 ij
k-1
Letting
évigl
Vi g?
¢i ‘= :
eV ¢!
we find
16 (0))" D = ) :
% = <é‘/’f ¢ + Y _ %=V tang; sind, . .. Sin; cosh; 1165/
1

=2
: k-1 "
+€d@2-2=¥") tang, sinb, - - - sin9k1¢>f> )

Letting x := tanfy, lemma 6 infers that (29) is monotone decreasing abpufThe proof
is complete.

Lemma 3.If the deviation measur® (p, p) = h'([tr pp, 1]), then

Dy (1) = / D, (MK (dB). (30)
[0.1]

Proof. For the probability measure on P(H), we have

W(p, §)7(dp) = / htr ) ()

P(H) P(H)

_ / / ha(tr pA)H (dB)7 (D)
P(H) J[0,1]

- [ ( / h,s(trpﬁ)n(dﬁ))h/(dﬂ)
[0.1] P(H)

_ / ( Wﬁ(p,mn(dﬁ))h’(dﬂ).
[0,1] P(H)

Substitutings (dp) for tr(IT(dp) ™), we obtain (30). O

Lemma 4.Let H be any finite-dimensional Hilbert space. For any elements € H and

any self-adjoint operatoA on H, the following are equivalent
o (BlAI®) ~ (WIAlY)
zZ <|ww

e @A WA= Al) > (WAl @] 1d—Alg).
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Lemma 5.We have

K- (k=1 [z :
<Z¢§") Z¢§">>= % f f1(61) cosy si?* 26, do,

<Z¢i(n)

i

Ws(p)

. K- (k=1 [ _
Id_Wﬂ(P)’Z¢,-(”)> = % / f1(61) cosdy sir? =2 g, doy

GO Ws(p)$ (O™ = C / * cog g, s 36, do,

[0

(¢(0)"]1d =W (p)|p(0)™) = C / " cog L, sirP 26, doy.
0

Proof. Wﬁ(p) is denoted as follows

We(p) =K | Wy(p, 9" v(dp)
P(H)

= k// pMv(dp).
(peP(H)|tr pp<p)

We obtain

< Z ¢-(n)

Wﬂ (p)

Z¢§">> _ < 3

st}

K / A" 0(dp)
{peP(H)|tr pp<p}

(@15 1¢;" v (dp)

¢ f
7 Pt pp<p)

(#:1p19;)" v(dp)

Y /
i,j {peP(H)|tr pp<B)
K- (k1)

% .
—D / f1(61) coshy sin? 26, ;.

Similarly,

<Z¢i<n)

i

Id 10 (p)' ¢;">> _ k// (@115165)"v(dp)
4 2,: Z {(peP(H)|tr pp>p} !

ij

= % / " 16 costy sir?*3 0, doy
v 0
(O™ |Ws(0)p(0)™) = K / (#(0)|5|¢(0))"v(dp)
{peP(H)|tr pp<p}

—C / * co2 1o, sin? 36, do,
o

(¢(0)"1d =W (p)p(0)™) = k'/ (@0)1p1¢(0))"v(dp)

{peP(H)|tr pp>B}
o
=C f co 1 g, sin?* =39, do;.
0

4645
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Lemma 6.The following function f (x) is monotone decreasing on, [&b):

m m T k . n
TECTD3) o) MY B (CELRNS SELRER)
0 0 i—1
k

a=1 b=1 =

k RN
X <c(b)éd’9 +x Z e_'(9f+dé)cé) do; . ..do,

j=1

wherec), d; are any real numbers.

Proof. The setK" is defined as follows

Kr};n = {I = (Ilv ) Im) € (N+,O)m

j=1
The numberC(7) is defined forl € K as sufficing the following condition:

(ixj)n = Z C(I)x{"...x,f;”.

j=1 IeKm

Therefore,

k n
(c2+x e'(9f+d‘{)cé> — Z C(I)elda(C(a))loe|11(91+dj)(ci.)ll.'.elld(9k+d5)(cla<)lkxn Io.
j=1

J JekHt
Thus,
F@ =YY @0k Y ()= (Oef)loghi=d
a=1 b=1 1
x(cic;)ll .. é"k(dﬂk_d’ﬁ)(c’;clg)’*xz”_m"
m m ) . . ‘ .
= @0ty )y Yy dFmld Tk
1 a=1 b=1
x (€ (R (el . (ckylkx2n=2o
= (@m)* Y Cc)DU)x> 2
1
where

D1y =Y S dEohdi R0 lid) (D)o (kYD) ().
a=1 b=1
It is sufficient to showD (1) > 0. Letting

. 0N/ kN7,
Vg = (). ()™

k
Ya = Z Iid,ll
=0

Wa,p = COYs — Yp)
we have

m m

D) =" vawa pvp.
1

a=1 b=
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Then
Wa,p = COYys — Yp) = COSy, COSY, + SiNy, SiNyj,.

As {cosy, cosy,} and {siny,siny,} are nonnegative{w,,} IS nonnegative matrix.
Therefore, we obtaiD(I) > 0. O

Appendix B. Proof of lemma 1

DY) = [ by (o, 5 (T @)
P(H)

k—1
7 _ _ 1l
= / i h(61) (” R 1) k-1t cog"*1 g, sir* 26, do,

0 k-1 k=1
2n 21 3 3
X / f / / SinZk_592...sin9k_1
0 0 0 0
k—1 k—2

X COSHy . ..COSH;_1 d@z Ce d92k_2
3 k—1\ (k — 1)! .
- / ’ h(61) <n + )u cos" 1o, sir* 26, do;
0

k—1
= / h<91>(”+ )|<¢(9)(">|¢(0><">>|2v(d9)
P(H)

k—1 k-1

1 1
x/ x2k—5dx.../ x dx -(2m)Ft
0 0

k—2
G n4k—1\ (k — 1) IO (2m)*1
_/0 h(@)( L1 ) 1 cos" ™ g sir? ede—zk*Z(k—Z)!

=20k —1) (” :f; 1) /0E h(6) co2" 16 sitt =26 do.

The proof is complete.
Appendix C. Proof of theorem 4

Definition 1 and lemma 1 infer that:

D (I1,) = 2(k — 1) (n i 1) / " co 1 s =3+ 6 dg. (31)

k—1 ) Jo
Since
3 CEEyrett
fzcoéesin"edez# Vx,y e R
0 2F(7y+1)
we have

n+k—N\Tn+DIk—1+y/2)
k—1 ) F'n+k+y/2)

T+ k—1+y/2T(n+k)

T T(n+k+y/2T(n+ DIk —1)

DI, = 2(k — 1)(
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B Fn+k) Tk—-1+y/2
T Tn4+k+y/2) T(k-1)
Therefore we obtain (8) from the following formula ©f function:
n—oo I'(n)n*

Letting y := 2, we obtain

(32)

Fn+k Tk-1+1) k-1

DE(IL,) = =—.
F'n+k+1) Tk-1 n+k

Thus, we obtain (9).
Next, we will prove (10).62 can be expanded as:

2 n (20— 2N s 6
v _;(21'—1)!! i
where we put2n)!! = 2n(2n —2)...4-2,(2n — DIl = 2n — 1)(2n —3)...3-1,0!l =
(=DM =1. From (32) we have

X (2 =2 2i
Dd'%“(n)(nn) = ;Ddb ,(n)(nn)
; (2i — Dl

_i 2i =21 ﬁk—l—irj
& @i —Dli § gn+k+j

k- - G-t pk -2 T
- n 3 n2 45 s’
Thus we obtain (10). Lemma 1 infers that
log Pty {5 € P(H)ldss(p, ) > €}
k -1 code
—tog(k—1(" T / x(1—x)2dx ). (33)
k—1 0
Therefore, it is sufficient for (13) to show that
k—1 1k -1k
log nt = (k— 1) logn — log(k — 1)! +—( ) (34)
k—1 n 2
coge
log (f x(1—x)F? dx) = 2nlogcose — logn + 2(k — 2) log sine — 2log cos
0
1
—Z(1+ (k — 2)cofe). (35)
n

The left-hand side of (34) is calculated as:
n+k—-1\ =X a4
lo = lo
g( k-1 ) 2109

k-1 i
= (k—1)logn —log(k — 1)! + ;Iog (1+ ;)
k=1 .
= (k — 1)logn — log(k — D! +
i=1
1(k— 1k

n

l
n

= (k— 1) logn — log(k — D! +
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Therefore, we have (34). The left-hand side of (35) is calculated as:

code code X n
log (/ x(1—x)*2dx — 2nlog COSE) =log (/ < ) (1—x)f2 dx)
0 0 coe

1 1
_ neq _ k-2 +
= Iog(/0 x"(1— cogx) —— dx)

A (k=2 .1
— 2log cos + log Z ; (—cos?e)ﬁ,+1

i=1

k—2 k—2 . 1
— 2logcos — logn + log Z . )(—coge) 14 i+t
1

i=1 n

k-2 _
_2|09COSE_|09”+|09<Z(k;2>(—cosze)i(1_l—’:l>>

i=1

12

— 2log cos — logn + log((1 — cog €)F—2
—1(1 —cofe) 31— (k—1)coe))
n

= —2logcos — logn + log(1 — cog €)* 2
11— (k—1)code
| 1-—-—
+og< n 1l-—cofe )

~ 11— (k —1)cofe
~ —2logcos‘e—Iogn+(k—2)|09(1—0052€)_; 1—co2e

We obtain (35).

Appendix D. Proof of lemma 2

From the symmetry ofP(H) and I1,,, we may assume that; = |¢o){(¢ol, p2 = |Pe) (Pe].
First, we consider the case bt= 2. For the following calculation, we prepare the following
equations:

(e |9 (0))]?" = (COS € cOS 61 + Sin? 61 Sir’ € + 2 COSe Sine COSY; SiNd; COSH)" (36)
21
/ log(1 + 2a cosd + a?)dd = 4y (|a]) log |a| (37)
0

where the function) is defined as:

1 x=>1

wm:{o x <O0.

Paying attention to (5) and (7), we have

—Dn,, (p\"[|o5™) — m log co e
m

1 | (old (0)) 12"
~=(m+1 log NPOPONT
m((m ) Lo 22 V(@10 27

(ol (©)) 2" v(d9) + mlog cose>

_2m+1)
T
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/2” / o cog 9, co e
X - - - - -
o Jo g (C0SH, Cose + sind, costs Sine)? + (sinby sinds sine)?

X C0§m+l 61 sinf, dv, db,
_(m+1)

x co$" 19, sind;, do,
_(m+1)

pid

—2m+1) [ log(tar? 6: tarf €) co" 6, siné, do;

s
Z—€

sirf e .
:(m+1)/ |0g(1 xtar?e)xmdx.
0

Substitutez = tarf ¢ into (51) of lemma 8, then

sirf e 1—
(m+1) / x"log (
0

From (38) and (39), we have
Dn, (o l105™) _ 3 i’ ¢

m

al tar?g)dx = —logcoge _isinz"e

i=1

i

i=1 i
Therefore, we can prove (22).

Next, we consider the case bf> 3. In this case, we have:

E
2
/ / log(1 + 2 tand; tane cosd, + (tand; tane)?)dd,
o Jo

z
/ 47t log(tanéy tane) v (tand; tane) co” 1 6, sind, do,
0

(38)

(39)

(40)

(el (0))?" =

(cog € coS 0 + sirf 61 coS 6, sif e
+2 cose Sine cosY; Sind; cosH, CosHy)”. (41)

Paying attention to (5), (37) and lemma 7, we can calculate

m m k—1

—Dn, (01" [1p5") — mlog cod e 1<<m+k—1> / Iog<|<¢o|¢<e)>|z">
P(H)

(el P (@) 2"
x|{ol (6))[2"1(d8) + 2m log cosf>

_w«wk 1>/ //mg(coszelcosze)

x[(cog € cog 0y + sirf 01 coS O, Sirf e
+2 cos¢ Sine cosb; sindy cost, costy)] L
x cog" 1 6, sinf“ =3 9, cos, sint* > 0, doy db, do;
2k =1k —2) (m+k—1
b4 ( k—1 >

[z
X / / / log(1 + 2 tandy cosd, tane cosd; + (tand; cosb; tane)?) d
0 0 0

X C0§m+1 61 SinZk_3 61 c0SH, Sil’]Zk_5 92 do, do,
2k — 1)k —2 k—1
w <m + > / f 47+ (tanfy cosh, tane)

b
x log(tané; cosy, tane) cos?’”+l 01 si* =36, costp sk 6,do1 db,.  (42)
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Substitutinga := tarfe, s ;= sir? 6, y := cog 61, then the condition taf cost, tane > 1
turns into the following conditions:

y a

- >x20 >y =0
a(l—y) 1+a
Using (42) and (50), we have
—Dn (o™ p™ log cog k—1
n, (o1 llpy ") —mlog STV L
m k—1

ﬁ 1- (1\) —_
xf (/ "3Iog<<1 e ”)dx)y'"(l—y)“dy
0 0 y
T k— . i
k(") () S ()
k—l 0 Cl(l_y) i 1 a(l_y)

Xym (1 _ y)k—Z dy

m+k—1\ [T y m k=2
B O A e

()

where f (x) is defined as:

f(x):—/in (1-2) yra-nay

l\)

I’
AN

)=

From lemma 9, the derivative of (x) can be calculated as:
1_§)k—2
/ —— | Y"@-»dy
1-y
k-2
mel — k72d
x(l_x) ( < ) )y 1=y “dy
1 k—2 k—2 X ) ] xm+1 1
= —Diy" T dy — 1—n)k2md

x(l—x),.zo( i )/0( yydy X(l—x)/o( yord
k—2 i -1
m _2 v\ m+1 -1 1
_ (k . ) ( )'C) X (m—i—k ) (ad)

yN\i—1
< ) >y (1—y)*3dy
1— =
_ meq o Nk=24. 1 fx _Zk_zm
_x(l—x)/o y A= y)tdy x(1—x) Jo (1 x) y"dy
x(1—x) i m+i+1 x(1-x) k—2 m+1

[

i

By (51) and lemma 9, the first term of (43) is calculated as:

m4k—1\ [T k=2 Y
—(k—l)( o )fo V- y) Iog(a(l_y)>dy

m4+k—1\ 2 (k-2 A y
_(k_1)< k—1 );( i >(_1)f0 Y 'Og(au—y))dy
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B m+k—1\2 k—2\ (-1
__(k_1)< k—1 >Z< i >m+i+1
1
J
k—

m+i

< log(1+a) +

Jj=1

:_(k_1)<m+k 1) <k—2> (=1
i m+i+1

m a J m+i 1 a J
< log(1+a)+ ) T a) > ;<1+a))
j=m+1

1
]:1] +
B m+k—1\ /%2 k—2\ (-1
——a-o(" (2 ()5
< |og(1+a)+2]1< a ))
J=
_(k_l)(m—i—k—l =2 (k—2> (=1) ( a )H’”
k—1 == i m+i+D(G+m)\1l+a
+hk—1\1t 1
k—2 ) m+1
a J m+k—1 a
'<1+a>>+(k_l)( k—1 >g<1+a)

"1 / +k-1
= log(1+a) — Z;(l_‘;» —(k—l)(mk_l >g<11a> (45)

whereg(x) is defined as:
i k 2 (_1)i j+m
8x) _;;< i )(m+i+1)(j+m)x '
By lemma 9, the derivative of(x) is calculated as:
=2 k—2\ (=1 2 k—2\ (=1 1—
’ — j+m—=1 m
&) ;( i )(m+z+1)Z 2;( i )(m+i+1)x 1—x
o k—2\ (=1 xR (k—2\  (—x)
_1—x;< i )(m+i+1) 1- x%( i )(m+i+1)
AR e A S kf k—2\ (—x) (46)
S 1-x\ k-2 m+1l 1-x4<\ i Jm+i+D’

From (44) and (46), we havé'(x) = —g’(x). The definitions off (x) andg(x) mean that
f(0) = g(0) = 0. Then we obtainf (x) = —g(x). By (43) and (45), we have

—Dn. (0o — 2m log cose k—1\ [t
m, (P " llpa ) — g RN Lo /1
m k—1 0

- 1)) —
([ g (@ D Y ar )y vty
0 y

[EEN
+
Q
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—logcoge —

Then we obtain:

Dn, (" 105™) _ 3 sif? ¢

m = 1

We proved (22).

Next we will prove (23). We consider the tangent spag®(H) at p := [¢(0)) (¢ (0)].
If c(z) is a curve orP(H) such thatc(0) = p, ¢ denotes the element @f,P(H) defined
by c(¢). The Fubini—Study metrig, is defined as:

2

Therefore, it is sufficient to show that
Jgn = anfx.

Let c(t) == |¢:) (], ¢ == @(,0,...,0). (See equation (6).) Becauge(c,¢) =1, it is
sufficient to prove that

Jh (¢ ¢) = 2n.

We assume thdt > 3. From (41), we have

d 2 _
(E |09(|<¢z|¢(9)>|2")|t=0> (ol (8))|*" = 4n? coS" 2 6, sir? 6, cos 6, coS 6. (47)

By (47) and (49), we have:

k—1 d 2
("": 1 ) f (d—Iog(|<¢,|¢(9>>|z">|t:o) (ol (9))]2" v(dB)
- peH) \ I

2k — )k — 2 k=1 :
- wc”: . >4m2/ cos" 16y sir?~* 6, d6y
- 0

b
2

%
x / cos 6, sin*° 6, do, / cos 6, do;
0 0

C2k- k-2 (m+k— 1>4 L (m — DIk — 1! 1k — 3)!
= - k=1 )™ 2m k-1 20— "
= om. 48)

We obtain (23). In the case &f= 2, we can similarly prove (23).
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Lemma 7.If £ > 3, we then have

2—D(k—2) (& (% [z
(O, 02, 0v(dg) = 2EZDE =2 / / f £(61.0.600)
T 0 0 0

x c0sH1 Sirt =2 0, doy coshy sin* > 6, db, db. (49)

P(H)

Proof. From (7) the left-hand side of (49) is calculated as:

(k 1)'
f(61, 02, 0 )v(df) = / //f(91,92,9k)

X C0SH1 SII"IZk 61 db1 cosoy SInZk 6, do, doy

P(H)

2 T .
x/ / Si*~70;...siN6;_1C0SH3 - - - COSH_1 db5 ... dB_1
0 0

k—3

2 27
X/ / d9k+1...d92k_2
0 0

k—2

o AT x
- / f i / * £(61, 62, 6;) cOSH1 SIN?—3 6, doy cOSBy Sin?*~5 6, A6, A
0 0 0

— 1 rt 1
x(k - ]1.)/ x2k_7dx.../ x dx -(27)F2
YA 0 0

k=3

ar 03 03
= / / / £ (61, 62, 6;) cosdy sir =2 61 dh, cosds, sirt = 6, db, db;
0 0 0

k=1 (2n)k2
k=1 2k=3(k — 3)!

2k -k =2) (¥ % 2
_2Ak-Dk=-2 / / / (61, 62,60
s 0 0o Jo

X C0SHq sir?—3 61 db1 cosoy sin?—> 6, do, do,.
We then obtain (49). O

Lemma 8.The following integral can be calculated as:

1-a " 1—x 1 m+1 (1 _ a)i
[ e

i=1
Tia " X 1 1 i
i een () o=+ (55 ) o

Proof. Equation (50) is derived by

o . B _L mil B _m+1a_i>
/0 x™ log(1 x)dx_m+l((ot 1) log(l — a) ;l . (52)
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Also, equation (51) is derived by (52) and the following:

« 1 1
m| — m+1 | = .
/0 x™ logx dx w1 (oe <Oga m—}—l)) (53)

Lemma 9.We have the following equations:

n 1\ 1 -1
Z('7>( 2 =/ xm-1<1—x>"dx=(’"+”) 2 (54)
1/ m+1 0 n m

i=0
It is easily derived.
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